Metal Exchange within a Body-Centred Hydrogen-Bonded Network

Brendan F. Abrahams, Nicholas J. FitzGerald, Timothy A. Hudson and Richard Robson

School of Chemistry University of Melbourne Victoria, 3010 AUSTRALIA

Supplementary Material

Figure S1. ORTEP representations of a) $Zn_4Ni_4(C_4O_7)_4(H_2O)_{12}$ hydrate from the intracrystal exchange process (293K) b) $Zn_4Ni_4(C_4O_7)_4(H_2O)_{12}$ hydrate from direct synthesis (130 K).

Figure S2. Schematic representation of the unit cell for $M_8(C_4O_7)_4(H_2O)_{12}$ hydrate

Figure S3. The body-centred cubic network topology of the $M_8(C_4O_7)_4(H_2O)_{12}$ hydrate series.

Figure S4. A comparison of the IR spectra obtained from a) the intra-crystal exchange process and b) direct synthesis

Figure S1. ORTEP representations of a) $Zn_4Ni_4(C_4O_7)_4(H_2O)_{12}$ hydrate from the intracrystal exchange process (293K) b) $Zn_4Ni_4(C_4O_7)_4(H_2O)_{12}$ hydrate from direct synthesis (130 K). Thermal ellipsoids are at the 50% probability level.

Figure S2. Schematic representation of the unit cell for $M_8(C_4O_7)_4(H_2O)_{12}$ hydrate. Each tetrahedral unit represents a $M_8(C_4O_7)_4(H_2O)_{12}$ unit. The central red unit acts as a hydrogen-bond donor to the four blue units. The four green units each act as a hydrogen bond donor toward the red unit. Each connection between a pair of units involves a triple hydrogen bond and thus the central unit participates in 24 equivalent hydrogen bonds.

Figure S3. The body-centred cubic network topology of the $M_8(C_4O_7)_4(H_2O)_{12}$ hydrate series.

Figure S4. A comparison of the IR spectra of $Zn_4Ni_4(C_4O_7)_4(H_2O)_{12}$ hydrate obtained from a) the intra-crystal exchange process and b) direct synthesis