Accessory Information

Synthesis of 5-phenyl 2-Functionalized Pyrroles by amino Heck and tandem amino Heck Carbonylation reactions
Shazia Zaman, ${ }^{* A, B}$ Mitsuru Kitamura ${ }^{B, C}$ and Andrew D. Abell ${ }^{A}$
*A Department of Chemistry, University of Canterbury, Private bag 4800, Christchurch New Zealand
${ }^{B}$ Department of Chemistry, Graduate School of Science, 7-3-1 Hongo, Bunkyo-Ku Tokyo 113-0033, Japan
${ }^{C}$ Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan

shazia.zaman@canterbury.ac.nz

General Experimental Procedures

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz) spectra were recorded on 500 and 300 MHz spectrometers in CDCl_{3} using tetramethylsilane (for ${ }^{1} \mathrm{H}: \delta=0$) and CDCl_{3} (for $\left.{ }^{13} \mathrm{C}: \delta=77.0\right)$ as internal standard. High-resolution mass spectra were obtained with a JEOL JMS-700P mass spectrometer. Elemental analyses were carried out at The Elemental Analysis Laboratory, Department of Chemistry, Faculty of Science, the University of Tokyo. Flash column chromatography was performed on silica gel (Merck Silica gel 60, and Kanto Chemical Co., Inc. Silica gel 60N (spherical, neutral). N, N-Dimethylformamide (DMF) was distilled under reduced pressure calcium hydride, and stored over Molecular Sieves 4A under an argon atmosphere. Dichloromethane was distilled from calcium hydride, and stored over Molecular Sieves 4A. Triethylamine was distilled from CaH_{2}, and stored over Molecular sieves.
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was prepared by the literature procedure. ${ }^{1}$ Pentafluorobenzoyl chloride was purchased from Tokyo Chemical Industry Co., Ltd. and used without purification. Dehydrated THF and diethyl ether were purchased from Kanto Chemical CO., Inc.

1-Phenylpent-4-yn-1-one (2)

Acetophenone N, N-dimethyl hydrazone ${ }^{2} \mathbf{1}(2.0 \mathrm{~g}, 12.32 \mathrm{mmol})$ was treated with freshly prepared LDA [from $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, 7.7 mL$)$ and $N, N-$ diisopropylamine (2.6 mL) in THF $(25 \mathrm{~mL})$] at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h under argon atmosphere. 4-Bromo-1-butyne (0.92 mL) in THF (4 mL) was added to it. The reaction was stirred continuously, warmed to rt overnight and quenched by adding aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was then extracted with ether $(\times 3)$. The combined organic fractions were washed with water, brine, dried over anhydrous MgSO_{4} and evaporated in vacuo to give crude the alkylated hydrazone which was used in the next step without further purification.

The crude alkylated hydrazone was then hydrolyzed by adding acetic acid (5.9 mL , $104 \mathrm{mmol})$, sodium acetate ($2.83 \mathrm{~g}, 20.85 \mathrm{mmol}$), water (0.7 mL), and THF (3.3 mL) were added and the mixture was stirred at rt for five hours. The reaction was quenched by adding aqueous NaOH solution at $0^{\circ} \mathrm{C}$ and the mixture was extracted with ether ($\times 3$). The combined organic extracts were washed with water, brine, dried over anhydrous MgSO_{4} and evaporated in vacuo. The crude product was then purified by flash column chromatography $(\mathrm{H} / \mathrm{EA}=93 / 7)$ to give $1.1 \mathrm{~g}(91 \%)$ of 2 as a yellow oil.
(Found: C 83.32, H 6.49\%. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}$ requires C 83.51, H 6.37\%); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta 1.99(1 \mathrm{H}, \mathrm{t}, J 2.5,5-\mathrm{CH}), 2.63\left(2 \mathrm{H}, \mathrm{dt}, J 8,3,3-\mathrm{CH}_{2}\right), 3.24(2 \mathrm{H}, \mathrm{t}, J 7.5,2-$ $\left.\mathrm{CH}_{2}\right), 7.45(2 \mathrm{H}, \mathrm{t}, J 8, A r), 7.57-7.59(1 \mathrm{H}, \mathrm{m}, ~ A r), 7.96(2 \mathrm{H}, \mathrm{d}, J 8, A r) ;{ }^{13} \mathrm{C}$ NMR (75
$\mathrm{MHz}) \delta 13.1\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 37.4\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 68.7(\mathrm{CH}, \mathrm{C}-5), 83.3(\mathrm{C} \equiv \mathrm{CH}, \mathrm{C}-4), 127.9$, 128.6, 133.2, 136.4 (Ar), 197.5 (C-1).

2-But-3-yn-1-yl-2-phenyl-1,3-dioxolane (3)

A solution of the ketone $2(1.90 \mathrm{~g}, 12.04 \mathrm{mmol})$ in benzene, ethylene glycol (2.5 mL , 45.17 mmol) and a catalytic amount of p-TsOH were refluxed for 3 h using a DeanStark apparatus for removal of water. The reaction was quenched by adding sat. NaHCO_{3} soln (aq.), extracted with ethyl acetate ($\times 3$), washed with brine, dried over MgSO_{4} and evaporated in vacuo. The crude product was purified by recrystallization from n -hexane to give 2.3 g (95%) of $\mathbf{3}$ as a colorless solid.
(Found: C 76.91, H 7.05\%. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C} 77.20, \mathrm{H} 6.97 \%$); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta 1.89(1 \mathrm{H}, \mathrm{t}, J=2.5,4-\mathrm{CH}), 2.14-2.17\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 2.27-2.30(2 \mathrm{H}, \mathrm{m}, 2-$ CH_{2}), 3.77 (2H, t, J 7, 4'- $\mathrm{CH}_{2} \mathrm{O}$), $4.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}^{\prime} 7,5^{\prime}-\mathrm{CH}_{2} \mathrm{O}\right), 7.28-7.31(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, $7.34(2 \mathrm{H}, \mathrm{t}, J 7.5, A r), 7.43-7.45(2 \mathrm{H}, \mathrm{m}, A r) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 13.1(C-2), 39.3$ (C-1), 64.6 ($C-4$ ', 5'), 67.8 (C-4), 84.1 (C-3), 109.3 ($\left.C-2^{\prime}\right), 125.9,128.01,128.2$, 141.9 (Ar).

Methyl 5-(2-phenyl-1,3-dioxolan-2-yl)pent-2-ynoate (4)

n-Butyl lithium (1.6 M in hexane, 2.2 mL) was added to a solution of $\mathbf{3}(684 \mathrm{mg}, 3.38$ $\mathrm{mmol})$ in THF (15 mL) at $-78^{\circ} \mathrm{C}$ and stirred for 1 h at the same temperature. Methyl chloroformate ($0.05 \mathrm{~mL}, 4.06 \mathrm{mmol}$) in THF (5 mL) was added to the reaction mixture and stirred for 1 h . The reaction was quenched by adding $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.), extracted with ether $(\times 3)$, washed with $\mathrm{H}_{2} \mathrm{O}(\times 2)$, brine $(\times 2)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The crude product was purified by flash column chromatography $(\mathrm{H} / \mathrm{EA}=90 / 10)$ to give $780 \mathrm{mg}(88 \%)$ of 4 as a cream solid.
${ }^{1} \mathrm{H}$ NMR $\delta 2.18\left(2 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{CH}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{t}, J 7.7,4-\mathrm{CH}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 3.78 (2 H , ddd, $J 7.3,6.0,3.4,4^{\prime}-\mathrm{CH}_{2}$), 4.01 (2 H , ddd, $J 7.4,6.1,3.6,5$ ' $-\mathrm{CH}_{2}$), $7.28-$ $7.36(3 \mathrm{H}, \mathrm{m}, A r), 7.42-7.44(2 \mathrm{H}, \mathrm{m}, A r) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.4(C-4), 38.1$ (C-5), 52.5 $\left(C H_{3}\right), 64.7$ (C-4',5'), 72.6 (C-2) 89.4 (C-3), $109.0\left(C-2^{\prime}\right), 125.7,128.2,128.3,141.6$ (Ar), 154.2 (C-1).

Methyl 6-oxo-6-phenylhex-2-ynoate (5)

A solution of $4(730 \mathrm{mg}, 2.80 \mathrm{mmol})$ in THF (15 mL) and $1 \mathrm{~N} \mathrm{HCl}($ aq. 10 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for $4.5 \mathrm{~h} . \mathrm{NaHCO}_{3}$ soln. (sat) was added to the mixture, extracted with ether ($\times 3$), washed with $\mathrm{H}_{2} \mathrm{O}(\times 2)$, brine $(\times 1)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo. The crude product was purified by column chromatography (H/EA 90/10) to give $513 \mathrm{mg}(84 \%)$ of 5 as a white solid.
(Found: C 72.13, H $5.61 \% . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$ requires C 72.20, H 5.59\%.); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}) \delta 2.79\left(2 \mathrm{H}, \mathrm{t}, J 7.5,4-\mathrm{CH}_{2}\right), 3.31\left(2 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{CH}_{2}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.49$ (2H, t, J 7.5, Ar), $7.59(1 \mathrm{H}, \mathrm{t}, J 7.4, A r), 7.96(2 \mathrm{H}, \mathrm{d}, J 7.4 \mathrm{~Hz}, A r) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 13.3$ (C-4), $36.5(C-5), 52.6\left(\mathrm{CH}_{3}\right), 73.1(C-2), 88.3(C-3), 128.0,128.7$, 133.5, 136.1 (Ar), 154.0 ($C-1$), 196.7 ($C-6$).

(EZ)-1-Phenylpent-4-yn-1-one oxime (6a)

The acetylenic ketone $5(1.09 \mathrm{~g}, 6.90 \mathrm{mmol})$, hydroxylamine hydrochloride $(1.19 \mathrm{~g}$, $13.8 \mathrm{mmol})$ and pyridine $(1.56 \mathrm{~mL}, 19.32 \mathrm{mmol})$ were stirred in ethanol $(30 \mathrm{~mL})$ at rt for 2 h . The reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}$, brine and then 2 M HCl (aq.) and extracted with ethyl acetate ($\times 3$). The combined organic fractions were washed successively with 2 M HCl , sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give a (E / Z) mixture (5:2, based on
analysis of ${ }^{1} \mathrm{H}$ NMR spectrum) of crude oxime, which was purified by column chromatography using $(\mathrm{H} / \mathrm{EA}=92 / 8)$ to elute $997 \mathrm{mg}(83 \%)$ of $E-6 \boldsymbol{a}$ as a white solid first, and then 147 mg (12%) of $Z-6 a$ as a yellow solid, thus yielding the oxime in a combined yield of 95%.

Data for $(E)-\boldsymbol{b a}$
(Found: C 76.26, H 6.39, N 7.98\%. $\mathrm{C}_{11} \mathrm{H}_{11}$ NO: requires C 76.27, H 6.4, N 8.08\%.); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 1.98(1 \mathrm{H}, \mathrm{t}, J 3.0,5-\mathrm{CH}), 2.53\left(2 \mathrm{H}, \mathrm{dt}, J 7.5,2.5,3-\mathrm{CH}_{2}\right), 3.06$ (2H, t, J 7.5, 2-CH2), 7.39-7.40 (3H, m, Ar), 7.63-7.64 (2H, m, Ar); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 15.4$ ($C-3$), 25.8 ($C-2$), 69.1 ($C-5$), 83.1 ($C-4$), 126.4, 128.6, 129.4, 135.1 (Ar), 157.9 (C-1).

Data for (Z)- $\boldsymbol{6 a}$
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 1.98(1 \mathrm{H}, \mathrm{t}, J=3.0 \mathrm{~Hz}, 5-\mathrm{CH}), 2.37\left(2 \mathrm{H}, \mathrm{dt}, J 7.5,3,3-\mathrm{CH}_{2}\right)$, $2.78\left(2 \mathrm{H}, \mathrm{t}, J 7.5,2-\mathrm{CH}_{2}\right), 7.37-7.70(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.06(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}) \delta 16.0(C-3), 34.4(C-2), 69.4$ (C-5), 82.7 (C-4), 127.7, 128.3, 129.1, 132.6 (Ar), 156.7 (C-1).

(E)-Methyl-6-(hydroxyimino)-6-phenylhex-2-ynoate (6b)

The aryl alkynyl ketone 5 ($590 \mathrm{mg}, 2.73 \mathrm{mmol}$), hydroxylamine hydrochloride (402 $\mathrm{mg}, 6.8 \mathrm{mmol})$ and pyridine ($610 \mu \mathrm{~L}, 7.6 \mathrm{mmol}$) were stirred in $\mathrm{EtOH}(30 \mathrm{~mL})$ at rt for 5 h . The reaction mixture was quenched by adding $\mathrm{H}_{2} \mathrm{O}$, brine and then 2 M HCl (aq.) and extracted with ethyl acetate $(\times 3)$. The combined organic fractions were washed successively with 2 M HCl , sat. $\mathrm{NaHCO}_{3}(\mathrm{aq})$, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the title compound as a single isomer, (based on analysis of ${ }^{1} \mathrm{H}$ NMR spectrum), which was purified by column
chromatography using $(\mathrm{H} / \mathrm{EA}=90 / 10)$ to elute $441 \mathrm{mg}(70 \%)$ of $E-\boldsymbol{\sigma} \boldsymbol{b}$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 2.66\left(2 \mathrm{H}, \mathrm{t}, J 7.9,4-\mathrm{CH}_{2}\right), 3.09\left(2 \mathrm{H}, \mathrm{t}, J 7.9,5-\mathrm{CH}_{2}\right), 3.75(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 7.36-7.43(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.58-7.65(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.10(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH})$.

(E)-1-Phenylpent-4-yn-1-one O-pentafluorobenzoyl oxime (7a)

To a solution of $E-6 \mathbf{a}(640 \mathrm{mg}, 3.69 \mathrm{mmol})$ and TEA $(1.0 \mathrm{~mL}, 7.38 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COCl}(1.36 \mathrm{mg}, 5.91 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ and stirred for 1.5 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ and extracted with ether ($\times 3$). The combined organic extracts were washed with water, brine, dried over anhydrous MgSO_{4} and evaporated in vacuo. The crude oxime was purified by silica chromatography $(\mathrm{H} / \mathrm{EA}=95 / 5)$ to give $1.16 \mathrm{~g}(88 \%)$ of $E-7$ a as a white solid. Data for $E-7$ a.
${ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 1.99(1 \mathrm{H}, \mathrm{t}, J 2.5,5-\mathrm{CH}), 2.50\left(2 \mathrm{H}, \mathrm{dt}, J 7.5,2.5,3-\mathrm{CH}_{2}\right), 3.15$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.5,2-\mathrm{CH}_{2}\right), 7.40(2 \mathrm{H}, \mathrm{t}, J 7.5, A r), 7.49-7.52(1 \mathrm{H}, \mathrm{m}, A r), 7.77(2 \mathrm{H}, \mathrm{d}, J 8$, Ar); ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 15.9(C-2), 27.6(C-3), 69.9(C-5), 81.4(C-4), 107.0(\mathrm{~m}$, C-F), 127.4, 128.7, 131.2, 132.5 (Ar), 135.8-139.6 (m, C-F), 141.6-145.4, 143.6147.4, (m, C-F), $156.2(\mathrm{OCO}), 166.6(C-1)$; TOF MS ES ${ }^{+}[\mathrm{MH}]^{+}$: Found: 368.0637; Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{NO}_{2}: 368.0710$.

(E)-Methyl-6-(pentafluorobenzoyloxyimino)-6-phenylhex-2-ynoate (7b)

To a solution of $E-6 \mathbf{b}(292 \mathrm{mg}, 1.26 \mathrm{mmol})$ and TEA ($350 \mu \mathrm{~L}, 2.53 \mathrm{mmol}$) in DCM $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COCl}(554 \mathrm{mg}, 2.40 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ and stirred for 1.5 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ and extracted with ether ($\times 3$). The combined organic extracts were washed with water, brine, dried over
anhydrous MgSO_{4} and evaporated in vacuo. The crude oxime was purified by recrystallization (H/EA) to give $420 \mathrm{mg}(75 \%)$ of $E-7 \boldsymbol{b}$ as a white solid. (Found: C 56.41; H 3.02; N 3.33\%. $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{~F}_{5}$ requires C 56.48; H $2.84 ; \mathrm{N} 3.29 \%$.)
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 2.64\left(2 \mathrm{H}, \mathrm{t}, J 7.5,4-\mathrm{CH}_{2}\right), 3.21\left(2 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{CH}_{2}\right), 3.72(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 7.46(2 \mathrm{H}, \mathrm{t}, J 7.5, A r), 7.51(1 \mathrm{H}, \mathrm{t}, J 7.0, A r), 7.76(2 \mathrm{H}, \mathrm{d}, J 7.5, A r) ;{ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 16.14(C-4), 26.50(C-5), 52.53\left(C H_{3}\right), 73.86(C-2), 85.97(C-3)$, 127.4, 128.9, 131.4, 132.1 (Ar), 135.8-136.3, 139.2-139.7, 141.7-142-2, 143.6-143.9, 145.0-145.6, 147.0-147.6 (m, C-F), 153.6 (C-1), 156.0 (OCO), 196.7 (C-6).

References:

1. Coulson, D. R. Inorg. Synth. 1990, 28, 107.
2. Corey, E. J.; Enders, D. Tetrahedron. Lett. 1976, 3. b) Corey, E. J.; Pearcepp, H. L. J. Am. Chem. Soc. 1979, 101, 5841. c) Enders, D.; Wortmann, L.; Peters, R. Acc. Chem. Res. 2000, 33, 157.
