Accessory Publication

The Preparation of Solid-Supported Peptide Boronic Acids Derived from
 L-4-Boronophenyl Alanine and their Affinity for Alizarin

Peter J. Duggan, Daniel A. Offermann

General Synthetic Procedures:

All commercial materials were used without further purification unless otherwise stated. DMF and DMSO were stored over $4 \AA$ sieves; acetonitrile and methanol were stored over $3 \AA$ sieves; diethyl ether and THF were distilled from a sodium/benzophenone system and used immediately. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian 300 MHz spectrometer and recorded in parts per million (δ) using the residual non-deuterated solvent as an internal reference. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian 75 MHz spectrometer and recorded in parts per million (δ) using the residual non-deuterated solvent as an internal reference. IR spectra were recorded on a Perkin Elmer 1600 Series Fourier Transform Spectrophotometer. Liquid samples were mounted neat on NaCl plates, while solid samples were applied as a nujol (paraffin) mull. Optical rotations were determined using a Perkin Elmer 141 Polarimeter with a 1 mL cell (path length of 10 cm) at the reported temperatures and concentrations. Electrospray mass spectra were recorded on a Micromass Platform QMS Spectrometer (QMS - Quadrupole Mass Electrospray). High resolution mass spectra (HRMS) were recorded on a Bruker BioApex 47e Fourier Transform mass spectrometer. Liquid chromatography was performed using a forced flow of a mixture of solvents on silica gel 60 ($0.040-0.063 \mathrm{~mm}$). LC/MS analysis was performed using an Alltech Alltima C_{18} column, $150 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particle size; Agilent 1100 series G1315A diode array detector; Waters Micromass ZMD mass spectrometer; all controlled with Micromass MassLynx software version 3.5. HPLC solvent A: 0.1 \% TFA/Milli-Q water; HPLC solvent B: 0.06 \% TFA/Milli-Q water. Flowrate

Accessory Publication

was $1 \mathrm{~mL} / \mathrm{min}$ with a gradient of $10-95 \%$ (solvent B) in 15 mins . The absorbance detection range was 200-290 nm.

Solid Phase Peptide Synthesis

General

Peptides were prepared following the general procedures recommended by Mimotopes (formerly Chiron Technologies), ${ }^{1}$ and also described by Bromfield, Cianci and Duggan ${ }^{2}$ with the exception that the activating agent (BOP) was replaced by HBTU. All solid phase peptide synthesis was carried out using SynPhase ${ }^{\text {TM }}$ D-series lanterns. These solid supports consisted of an acetylated methacrylic acid/dimethylacrylamide copolymer grafted to an inert polyethylene base. The solid supports were supplied without an attached linker (nonfunctionalised) and possessed an average loading of $8.0 \mu \mathrm{~mol}$ per unit. All amino acids used were suitably protected for standard 'Fmoc' solid phase peptide synthesis. This included Fmoc protection of the primary amine in addition to appropriate side chain protection as detailed in Table 1. Procedures for spacer attachment, Fmoc determination, cleavage of peptides using sonication under basic conditions and terminal N-capping were not reported by Bromfield ${ }^{3}$ and are described below.

Table 1. Protected amino acids used in solid phase peptide synthesis:

Amino Acid	Protecting Group (PG)	
	$\boldsymbol{\alpha}$-Amine	Side Chain
Ala	Fmoc	N/A
Arg	Fmoc	$t \mathrm{Bu}$
Leu	Fmoc	Pmc
BPA	Fmoc	N/A
Lys	Fmoc	Pin
Phe	Fmoc	BOC

Spacer Attachment

Through the HMB linker

A solution of DMAP ($1.1 \mathrm{mg}, 9 \mu \mathrm{~mol}$) in $20 \% \mathrm{DMF} / \mathrm{DCM}(450 \mu \mathrm{~L})$ was prepared (designated solution A). N-Fmoc- $6-$ aminohexanoic acid ($31.8 \mathrm{mg}, 90 \mu \mathrm{~mol}$) was dissolved in 20% DMF/DCM $(450 \mu \mathrm{~L})$, and DIC ($14.1 \mu \mathrm{~L}, 90 \mu \mathrm{~mol}$) was then added and the mixture allowed to stand for 2 mins (designated solution B). A lantern, bearing the HMB linker, was then immersed in solution B, then solution A was added. The combined reaction mixture (900 $\mu \mathrm{L}$) was left to stand for 2 hrs at room temperature with occasional agitation.

The solution was then decanted and the lantern was washed with DMF $(900 \mu \mathrm{~L})$ for 5 mins, followed by DCM $(900 \mu \mathrm{~L})$ for 5 mins. The lantern, with spacer attached, was then allowed to air-dry for 30 mins at room temperature.

Accessory Publication

Directly to solid support

N-Fmoc-6-aminohexanoic acid ($31.8 \mathrm{mg}, 90 \mu \mathrm{~mol}$) was dissolved in DMF ($450 \mu \mathrm{~L}$) (designated solution A). HOBt. $\mathrm{H}_{2} \mathrm{O}(13.8 \mathrm{mg}, 90 \mu \mathrm{~mol})$, $\mathrm{HBTU}(34.1 \mathrm{mg}, 90 \mu \mathrm{~mol})$ and NMM (14.8 $\mu \mathrm{L}, 135 \mu \mathrm{~mol}$) were dissolved in DMF ($450 \mu \mathrm{~L}$) (designated solution B). Solution A was then added to solution B and the combined reaction mixture ($900 \mu \mathrm{~L}$) was left to stand for 2 mins at room temperature. An Fmoc deprotected lantern was then immersed in the coupling solution and left to stand for 2 hrs at room temperature with occasional agitation. The solution was then decanted and the lantern was washed with DMF $(900 \mu \mathrm{~L})$ for 5 mins, followed by DCM $(900 \mu \mathrm{~L})$ for 5 mins. The lantern, with spacer attached, was then allowed to air-dry for 30 mins at room temperature.

Fmoc Determination

A lantern bearing an Fmoc protected peptide was immersed in 20% piperidine/DMF (10.0 mL) cleavage solution and left to stand at room temperature for 45 mins with occasional agitation. A 1.0 mL aliquot of the reacted cleavage solution was then diluted with fresh 20% piperidine/DMF (10 mL) and the absorbance measured (301 nm) against a blank cell also containing 20% piperidine/DMF. The amount of Fmoc cleaved and hence the peptide loading for each solid support was calculated using Equation 1.
$\mathrm{n}(\mathrm{Fmoc})=\left[\frac{\mathrm{A}_{301}}{\varepsilon \times l}\right] \times \mathrm{v} \times \mathrm{df}$

Accessory Publication

Where: $\mathrm{A}_{301}=$ average absorbance at $301 \mathrm{~nm} ; \varepsilon=7.8 \times 10^{6} \mathrm{~mL} \cdot \mathrm{~mol}^{-1} . \mathrm{cm}^{-1} ; l=1.0 \mathrm{~cm} ; \mathrm{v}=$ $11.0 \mathrm{~mL} ; \mathrm{df}=$ dilution factor $=10$.

Equation 1 "Fmoc determination" calculation

Cleavage of peptides from lanterns

A lantern bearing a side chain deprotected peptide connected to the solid phase through a HMB linker was immersed in 60% acetonitrile/ 0.1 M NaOH solution $(900 \mu \mathrm{~L})$ and placed in an ultrasonic bath for 30 mins at room temperature. The lantern was then removed and the cleavage solution neutralised (pH 7.0) with $2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$. The solution was then freezedried to afford a mixture of the peptide and sodium phosphate salts as a white solid.

Peptide Analysis

All peptides from the initial library displayed purities in excess of 90% via LC/MS. This purity refers to the organic component of the peptide cleavage mixture and does not include the accompanying inorganic salts. The total ion count (TIC) elution profiles for all peptide samples included: a minor peak ($<10 \%$) with retention times of 2.3-2.4 mins; and a major peak (>90\%) with retention times of 8.0-10.2 mins. A typical elution profile is shown below.

Typical LC/MS (TIC) elution profile - peptide boronic acid 4

Accessory Publication

Mass spectral analysis of the minor peak present in each sample failed to identify any desired peptide product, associated peptide fragments or potential deletion products, and was therefore considered to be non-peptidic in nature. Mass spectral analysis of the major peak present in each sample showed the presence of the desired peptide boronic acid. The molecular ion peaks for the free boronic acid species were rarely observed however, with the m / z values for a variety of corresponding boroxine species being identified. A typical mass spectral analysis together with the assignment of major m / z values and potential structures of the identified species is shown below.

Accessory Publication

m / z	Identified Species $^{\mathrm{a}}$
365.98	$[\text { boroxine dimer }+5 \mathrm{H}]^{5+}$
452.48	$[\text { macrobicyclic boroxine trimer }+6 \mathrm{H}]^{6+}$
461.31	$[\text { boroxine trimer }+6 \mathrm{H}]^{6+}$
921.52	$\left[{\text { boroxine trimer }+3 \mathrm{H}]^{3+}}^{9939.53}\right.$

(boroxine dimer)

(boroxine trimer)

(macrobicyclic boroxine trimer)

Where: $\square=$ Peptide

Accessory Publication

N-Terminal Capping

Acetic anhydride $(25 \mu \mathrm{~L}, 265 \mu \mathrm{~mol})$ and DIEA $(5 \mu \mathrm{~L}, 29 \mu \mathrm{~mol})$ were added to DMF $(870 \mu \mathrm{~L})$. A lantern bearing an Fmoc deprotected peptide, attached to the solid phase directly through the aminohexanamide spacer, was then immersed in the reaction mixture and left to stand at room temperature for 1.5 hrs with occasional agitation. The solution was then decanted and the lantern was washed with methanol $(900 \mu \mathrm{~L})$ for 2×10 mins. The lantern, with acetamide capped peptide was then allowed to air-dry for 30 mins at room temperature.

Accessory Publication

Binding Constant Determination:

General

Each peptide sequence was individually assessed for binding ability with alizarin. All binding experiments were conducted using side chain deprotected peptides bound to a lantern. For ease of comparison, all binding experiments were conducted at the same temperature (room temperature $25^{\circ} \mathrm{C}$) and pH (10.7), using comparable concentrations. Unless otherwise stated, all masses and volumes relating to binding experiments refer to a single lantern. Blank lanterns were included in all binding experiments to assess the degree of non-specific binding to the solid support. Phenylalanine control peptides were also assessed for binding ability to determine the extent of binding due to the boronic acid moieties.

Aqueous methanol carbonate buffer

A 50 mM solution of NaHCO_{3} was prepared from distilled water and the pH was adjusted to 9.60 with the addition of 1 M NaOH . The carbonate buffer was then diluted with an equal volume of methanol and thoroughly mixed to afford the 50% aqueous methanol carbonate buffer. The buffer solution was stored at $4^{\circ} \mathrm{C}$ and used within 2 days.

The pH of this aqueous methanol buffer was measured to be 10.8 with a pH meter calibrated with aqueous buffers. According to Perrin and Dempsey, ${ }^{3}$ a correction factor should be applied to obtain a pH (referred to as pH^{*}) which reflects the actual thermodynamic equilibrium present in the mixed aqueous organic buffer. In this case the correction factor is negative $0.1,{ }^{3}$ and so the $\mathrm{pH}^{*}=10.7$ for the buffer used in the binding assays.

Accessory Publication

Alizarin absorbance standard curve

Standard solutions of alizarin in aqueous methanol carbonate buffer were prepared (final concentrations: $0.00,6.56,13.1,19.7,26.2,32.8,39.3,45.9,52.5$ and $59.0 \mu \mathrm{M})$ and the absorbances measured (in triplicate) at 507 nm .

Alizarin Binding Study

It is important to note that all binding experiments were conducted using a two phase system in which the peptide host and all bound species were located on the solid phase. For ease of comparison, these solid supported entities were expressed in terms of "concentration" by dividing the number of moles of each species by the total volume of the binding medium (2000 $\mu \mathrm{L}$).

A lantern bearing a side chain deprotected peptide was immersed in aqueous methanol carbonate buffer (5 mL) and allowed to stand for 15 mins at room temperature. The solution was then decanted and the lantern was washed with methanol ($2000 \mu \mathrm{~L}$) for $2 \times 1 \mathrm{~min}$, then allowed to air-dry for 30 mins at room temperature. Commercially available alizarin (42.1

Accessory Publication

$\mathrm{mg}, 175 \mu \mathrm{~mol}$) was dissolved in aqueous methanol carbonate buffer $(2000 \mu \mathrm{~L})$ (designated alizarin stock solution).

The aforementioned lantern was then placed in a 4 mL vial and fully immersed in aqueous methanol carbonate buffer $(2000 \mu \mathrm{~L})$. The first aliquots $(3 \times 10 \mu \mathrm{~L})$ were then removed, diluted with aqueous methanol carbonate buffer $(3 \times 990 \mu \mathrm{~L})$ and the average absorbance measured at 507 nm . Alizarin stock solution ($30 \mu \mathrm{~L}$) was then added to the immersed lantern and thoroughly mixed. The vial was immediately sealed (screw-top lid) and left to equilibrate for 6 hrs at room temperature with occasional agitation.

The vial was then opened and the next aliquots $(3 \times 10 \mu \mathrm{~L})$ were then removed, diluted with aqueous methanol carbonate buffer $(3 \times 990 \mu \mathrm{~L})$ and the average absorbance measured at 507 nm . Alizarin stock solution ($30 \mu \mathrm{~L}$) was again added to the immersed lantern and thoroughly mixed. The vial was immediately re-sealed and left to equilibrate for another 6 hrs at room temperature with occasional agitation. The entire process of absorbance reading, followed by addition of alizarin stock solution, and equilibration was repeated until no further alizarin binding was observed.

The concentration of bound alizarin at each point of the titration curve was then calculated by subtracting the concentration of free alizarin from the total alizarin concentration as shown in the following figure.

Accessory Publication

Figure showing typical determination of bound alizarin concentration - peptide boronic acid 10

The binding event was accompanied by an increase in colouration (dark purple) of the solid support due to the formation of the $2: 1$ dye/peptide diester. Alizarin addition was repeated until no further increase in binding was observed, indicated by a plateau in bound alizarin concentration.

The general equilibrium expression for alizarin binding is summarised by Equation 1.
$\mathrm{H}+\mathrm{I} \leftrightarrow \mathrm{HI}$

Where: $\mathrm{H}=$ free host (free peptide); $\mathrm{I}=$ free indicator (free alizarin); $\mathrm{HI}=$ bound indicator (bound alizarin).

The binding constant expression at equilibrium is shown in Equation 2.
$\mathrm{K}_{\mathrm{HI}}=\frac{[\mathrm{HI}]}{[\mathrm{H}] \times[\mathrm{II}]}$

Where: $\mathrm{K}_{\mathrm{HI}}=$ host/indicator association constant (K_{a} peptide/alizarin).

Accessory Publication

The concentration of bound alizarin was then plotted against the concentration of free alizarin and a binding curve was fitted using nonlinear regression. The equation used to fit the binding isotherm is shown in Equation 3.
$Y=\frac{B_{\text {max }} \times X}{K_{d}+X}$

Where: $\mathrm{Y}=$ bound indicator (bound alizarin) $=[\mathrm{HI}] ; \mathrm{B}_{\max }=$ concentration of total host binding sites (asymptote); $\mathrm{X}=$ free indicator (free alizarin) $=[\mathrm{I}] ; \mathrm{K}_{\mathrm{d}}=$ dissociation constant $=$ concentration at which 50% of binding sites are occupied.

The alizarin binding plots with nonlinear regression curves are shown below.

From the estimate of the total binding site concentration $\left(\mathrm{B}_{\text {max }}\right)$, it was determined that each boronic acid moiety bound a single alizarin molecule, resulting in a $2: 1$ alizarin/peptide binding stoichiometry. The same binding ratio was observed with all peptide boronic acids studied. Using the $B_{\text {max }}$ estimates, the average amount of solid supported peptide was also calculated ($7.2 \mu \mathrm{~mol}$) which was slightly higher than the previous estimate obtained via Fmoc determination ($6.5 \mu \mathrm{~mol}$).

Accessory Publication

Table 2: Alizarin binding constants:

Peptide	Amino Acid Sequence	$K_{\mathrm{HI}}\left(\mathrm{M}^{-1}\right)^{\mathrm{a}}$
10	(Ac)BPA-BPA-Ala-Arg-Arg-Spacer-SS	1055 ± 57
11	(Ac)BPA-Arg-BPA-Ala-Arg-Spacer-SS	769 ± 36
12	(Ac)BPA-Arg-Arg-BPA-Ala-Spacer-SS	587 ± 33
13	(Ac)BPA-Arg-Ala-Arg-BPA-Spacer-SS	510 ± 33
14	(Ac)Arg-BPA-BPA-Arg-Ala-Spacer-SS	780 ± 41
15	(Ac)Arg-BPA-Arg-BPA-Ala-Spacer-SS	443 ± 26
16	(Ac)BPA-BPA-Ala-Lys-Lys-Spacer-SS	485 ± 28
17	(Ac)BPA-Lys-BPA-Ala-Lys-Spacer-SS	506 ± 31
18	(Ac)BPA-Lys-Lys-BPA-Ala-Spacer-SS	421 ± 26
19	(Ac)BPA-Lys-Ala-Lys-BPA-Spacer-SS	242 ± 24
20	(Ac)Lys-BPA-BPA-Lys-Ala-Spacer-SS	470 ± 35
21	(Ac)Lys-BPA-Lys-BPA-Ala-Spacer-SS	440 ± 23

[^0]
Alizarin Binding Curves

Peptide 10

Peptide 11

Peptide 12

Accessory Publication

Peptide 13

Peptide 14

Peptide 15

Accessory Publication

Peptide 16

Peptide 17

Peptide 18

Accessory Publication

Peptide 19

[Alizarin] $_{\text {free }}(\mathbf{M})$

Peptide 20

Peptide 21

Accessory Publication

Tests for cooperativity (Hill Plots)

Following the method described by Connors, ${ }^{4}$ Hill plots $(\log x$ vs $\log (y / 1-y))$ were prepared for alizarin binding to the solid supported peptide boronic acids where;
$\mathrm{x}=$ alizarin in solution and
$y=$ alizarin bound to lantern, normalized using the previously calculated Bmax values.
These Hill plots are shown on the following pages.

Peptide 10

$\boldsymbol{\operatorname { l o g }} x$

$\log x$

Slope	1.044 ± 0.03644	r^{2}	0.9915

$\log x$

Slope	1.013 ± 0.03235	r^{2}	0.9929

$\log x$

Slope	1.046 ± 0.04190	r^{2}	0.9889

$\log x$

Slope	0.9844 ± 0.03326	r^{2}	0.9921

Accessory Publication

$\log x$

Slope	1.049 ± 0.04538	r^{2}	0.9871

$$
\log x
$$

Slope $1.050 \pm 0.03903 \mid$ | r^{2} | 0.9904 |
| :--- | :--- |

$\log x$

Slope	1.040 ± 0.05318	r^{2}	0.9820

$\log x$

Slope	1.080 ± 0.05037	r^{2}	0.9850

$\log x$

| Slope | 1.037 ± 0.02854 |
| :---: | :---: | | r^{2} | 0.9947 |
| :--- | :--- |

Accessory Publication

${ }^{1}$ Chiron Technologies, "Multipin Peptide Synthesis Kit, Software Manual", (Chiron Technologies Pty Ltd: San Diego, 1997).
${ }^{2}$ Bromfield, K.M., Cianci, J., Duggan, P.J., Molecules, 2004, 9, 427-439.
${ }^{3}$ Perrin, D. D., Dempsey, B., "Buffers for pH and Metal Ion Control" (Chapman and Hall: London, 1974)
${ }^{4}$ Connors, K.A., "Binding Constants - The measurement of molecular complex stability", (John Wiley and sons: New York, 1987).

[^0]: ${ }^{a}$ Error values were calculated from the standard error in the K_{d} values.

