Bisamidoximes: Synthesis and Complexation with Iron (III) Accessory Publication

James E. Johnson,^{A,E} Carol Carvallo,^A Debra D. Dolliver,^B Natalia Sanchez,^A Vilma Garza,^A Diana

C. Canseco,^A Gordon L. Eggleton,^C and Frank R. Fronczek ^D

^ADepartment of Chemistry and Physics, Texas Woman's University, Denton, TX 76204-5859 USA

^BDepartment of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402

^CDepartment of Physical Sciences, Southeastern Oklahoma University, Durant, OK 74701-0609

USA

^DDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803

USA

^EAuthor to whom correspondence should be addressed

Accessory Materials

Table 1S. Data from Job's Method of continuous variation for amidoxime **3d** and iron (III); total concentration of 0.0020 M in DMF (λ = 520 nm).

Mole fraction	А
0.00	0.000

0.10	0.235
0.20	0.387
0.30	0.505
0.40	0.558
0.50	0.568
0.60	0.548
0.70	0.489
0.80	0.411
0.90	0.299
1.00	0.000

Table 2S. Data from Job's Method of continuous variation for amidoxime **3d** and iron (III); total concentration of 0.0004 M in DMF ($\lambda = 520$ nm).

Mole fraction	A
0.00	0.000
0.10	0.280
0.20	0.597
0.30	0.863
0.40	1.043
0.50	1.062
0.60	1.042
0.70	0.892
0.80	0.692
0.90	0.492
1.00	0.000

Table 3S. Data from Job's Method of continuous variation for amidoxime **3e** and iron (III); total concentration of 0.00080 M in DMF ($\lambda = 500$ nm).

Mole fraction	А
0.00	0.000
0.10	0.298
0.20	0.537
0.30	0.664
0.40	0.792
0.50	0.823
0.60	0.835
0.70	0.807
0.80	0.634
0.90	0.353
1.00	0.000

Table 4S. Data from Job's Method of continuous variation for amidoxime **3e** and iron (III); total concentration of 0.0016 M in DMF ($\lambda = 500$ nm).

Mole fraction	A
0.00	0.000
0.10	0.523
0.20	0.770
0.30	1.023
0.40	1.265
0.50	1.367
0.60	1.415
0.70	1.405
0.80	1.278
0.90	0.694
1.00	0.000

Table 5S. Data from Job's Method of continuous variation for amidoxime **3f** and iron (III); total concentration of 0.00080 M in DMF (λ = 525 nm).

Mole fraction	А
0.00	0.000
0.10	0.376
0.20	0.597
0.30	0.696
0.40	0.715
0.50	0.702
0.60	0.655
0.70	0.523
0.80	0.446
0.90	0.319
1.00	0.000

Table 6S. Data from Job's Method of continuous variation for amidoxime **3f** and iron (III); total concentration of 0.0020 M in DMF (λ = 525 nm).

Mole fraction	А
0.00	0.000
0.10	0.567
0.20	0.870
0.30	1.137
0.40	1.305
0.50	1.344
0.60	1.258
0.70	1.130
0.80	0.958
0.90	0.708
1.00	0.000

Table 7S. Data from Job's Method of continuous variation for amidoxime **3g** and iron (III); total concentration of 0.00080M in DMF ($\lambda = 550$ nm).

Mole fraction	A
0.00	0.000
0.10	0.256
0.20	0.472
0.30	0.639
0.40	0.804
0.60	0.971
0.70	0.872
0.80	0.614
0.90	0.311
1.00	0.000

Table 8S. Data from Job's Method of continuous variation for amidoxime **3g** and iron (III); total concentration of 0.0020 M in DMF ($\lambda = 550$ nm).

Mole fraction	А
0.00	0.000
0.10	0.382
0.20	0.701
0.30	0.892
0.40	1.015
0.50	1.103
0.60	1.121
0.70	0.995
0.80	0.712
0.90	0.380
1.00	0.000

Table 9S. Data from Job's Method of continuous variation for amidoxime **5** and iron (III); total concentration of 0.00080 M in DMF ($\lambda = 540$ nm).

Mole fraction	A
0.00	0.000
0.10	0.299
0.20	0.550
0.30	0.765
0.40	0.909
0.50	0.999
0.60	0.872
0.70	0.655
0.80	0.325
0.90	0.220
1.00	0.000

Table 10S. Data from Job's Method of continuous variation for amidoxime **5** and iron (III); total concentration of 0.0020 M in DMF ($\lambda = 540$ nm).

Mole fraction	А
0.00	0.000
0.10	0.362
0.20	0.648
0.30	0.878
0.40	1.075
0.50	1.205
0.60	1.060
0.70	0,721
0.80	0.573
0.90	0.313
1.00	0.000

Table 11S. Data from Job's Method of continuous variation for amidoxime **6** and iron (III); total concentration of 0.00160 M in DMF (λ = 465 nm).

Mole fraction	А
0.00	0.000
0.30	0.849
0.40	1.234
0.50	1.562
0.60	1.878
0.70	1.732
0.80	1.164
0.90	0.583
1.00	0.000

Table 12S. Data from Job's Method of continuous variation for amidoxime **7** and iron (III); total concentration of 0.0020 M in DMF ($\lambda = 533$ nm).

Mole fraction	A
0.00	0.000
0.10	0.047
0.20	0.112
0.30	0.112
0.40	0.209
0.50	0.251
0.60	0.271
0.70	0.301
0.80	0.282
0.90	0.233
1.00	0.000

Table 13S. Data from Job's Method of continuous variation for amidoxime **7** and iron (III); total concentration of 0.0040 M in DMF ($\lambda = 533$ nm).

Mole fraction	А
0.00	0.000
0.10	0.144
0.20	0.283
0.30	0.393
0.40	0.560
0.50	0.651
0.60	0.677
0.70	0.660
0.80	0.590
0.90	0.425
1.00	0.000

