Accessory Publication

Mono- and Di-nuclear Gold(I) Complexes Containing 1,12-Dicarba-closo-dodecaborane(12)

Joseph A. Ioppolo, A Cameron J. Kepert, A David J. Price A and Louis M. Rendina A,B

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding author. E-mail: rendina@chem.usyd.edu.au

Correspondence to: Dr Louis M. Rendina
School of Chemistry
The University of Sydney
Sydney, NSW 2006, Australia.
Table 1. Crystal data and structure refinement for C26H30B10P2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>dpj38ab</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C26 H30 B10 P2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>512.54</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 ≈</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)/n</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.359(3) ≈ α= 90°</td>
</tr>
<tr>
<td></td>
<td>b = 13.763(5) ≈ β= 105.490(7)°</td>
</tr>
<tr>
<td></td>
<td>c = 10.891(4) ≈ γ= 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1352.0(8) 3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.259 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.178 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>532</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.24 x 0.13 x 0.13 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.44 to 28.12°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12<=h<=12, -18<=k<=18, -14<=l<=14</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>13490</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3233 [R(int) = 0.0405]</td>
</tr>
<tr>
<td>Completeness to theta = 28.00°</td>
<td>98.4 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.977 and 0.958</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3233 / 0 / 192</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.045</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0446, wR2 = 0.1107</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0584, wR2 = 0.1199</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.639 and -0.304 e. 3</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\approx 2 \times 10^3$) for C26H30B10P2. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)</td>
<td>3457(1)</td>
<td>1888(1)</td>
<td>3003(1)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4712(2)</td>
<td>2929(1)</td>
<td>3393(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5313(2)</td>
<td>3343(1)</td>
<td>4592(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6193(2)</td>
<td>4170(1)</td>
<td>4720(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6490(2)</td>
<td>4593(1)</td>
<td>3660(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5915(2)</td>
<td>4189(1)</td>
<td>2470(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>5036(2)</td>
<td>3357(1)</td>
<td>2336(2)</td>
<td>23(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>1830(2)</td>
<td>2256(1)</td>
<td>3522(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>1720(2)</td>
<td>3079(1)</td>
<td>4235(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>384(2)</td>
<td>3312(1)</td>
<td>4500(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>-842(2)</td>
<td>2722(1)</td>
<td>4061(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>-750(2)</td>
<td>1905(1)</td>
<td>3353(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>570(2)</td>
<td>1679(1)</td>
<td>3070(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>4301(2)</td>
<td>913(1)</td>
<td>4186(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>B(14)</td>
<td>6122(2)</td>
<td>970(1)</td>
<td>5066(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>B(15)</td>
<td>5573(2)</td>
<td>220(1)</td>
<td>3685(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>B(16)</td>
<td>3776(2)</td>
<td>-237(1)</td>
<td>3588(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>B(17)</td>
<td>3210(2)</td>
<td>231(1)</td>
<td>4910(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>B(18)</td>
<td>4651(2)</td>
<td>982(1)</td>
<td>5820(2)</td>
<td>20(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for C26H30B10P2.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)-C(1)</td>
<td>1.8283(17)</td>
</tr>
<tr>
<td>P(1)-C(7)</td>
<td>1.8310(17)</td>
</tr>
<tr>
<td>P(1)-C(13)</td>
<td>1.8811(16)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.398(2)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.398(2)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.390(2)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.386(3)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.380(3)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.395(2)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.393(2)</td>
</tr>
<tr>
<td>C(7)-C(12)</td>
<td>1.398(2)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.393(3)</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.383(3)</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.379(3)</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.386(3)</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(13)-B(14)</td>
<td>1.719(2)</td>
</tr>
<tr>
<td>C(13)-B(15)</td>
<td>1.723(2)</td>
</tr>
<tr>
<td>C(13)-B(18)</td>
<td>1.724(2)</td>
</tr>
<tr>
<td>C(13)-B(17)</td>
<td>1.726(2)</td>
</tr>
<tr>
<td>C(13)-B(16)</td>
<td>1.732(2)</td>
</tr>
<tr>
<td>B(14)-B(16)#1</td>
<td>1.761(3)</td>
</tr>
<tr>
<td>B(14)-B(17)#1</td>
<td>1.765(3)</td>
</tr>
<tr>
<td>B(14)-B(18)</td>
<td>1.781(3)</td>
</tr>
<tr>
<td>B(14)-B(15)</td>
<td>1.783(3)</td>
</tr>
<tr>
<td>B(14)-H(14)</td>
<td>1.077(19)</td>
</tr>
<tr>
<td>B(15)-B(17)#1</td>
<td>1.759(3)</td>
</tr>
</tbody>
</table>
B(15)-B(18)#1 1.770(3)
B(15)-B(16) 1.772(3)
B(15)-H(15) 1.089(19)
B(16)-B(14)#1 1.761(3)
B(16)-B(18)#1 1.768(3)
B(16)-B(17) 1.782(3)
B(16)-H(16) 1.07(2)
B(17)-B(15)#1 1.759(3)
B(17)-B(14)#1 1.765(3)
B(17)-B(18) 1.776(3)
B(17)-H(17) 1.05(2)
B(18)-B(16)#1 1.768(3)
B(18)-B(15)#1 1.770(3)
B(18)-H(18) 1.07(2)

C(1)-P(1)-C(7) 104.31(8)
C(1)-P(1)-C(13) 105.87(7)
C(7)-P(1)-C(13) 102.57(7)
C(2)-C(1)-C(6) 118.39(15)
C(2)-C(1)-P(1) 127.59(13)
C(6)-C(1)-P(1) 113.99(12)
C(3)-C(2)-C(1) 120.52(16)
C(3)-C(2)-H(2) 119.7
C(1)-C(2)-H(2) 119.7
C(4)-C(3)-C(2) 120.37(16)
C(4)-C(3)-H(3) 119.8
C(2)-C(3)-H(3) 119.8
C(5)-C(4)-C(3) 119.93(17)
C(5)-C(4)-H(4) 120.0
C(3)-C(4)-H(4) 120.0
C(4)-C(5)-C(6) 119.97(16)
C(4)-C(5)-H(5) 120.0
C(6)-C(5)-H(5) 120.0
C(5)-C(6)-C(1) 120.82(16)
C(5)-C(6)-H(6) 119.6
C(1)-C(6)-H(6) 119.6
C(8)-C(7)-C(12) 118.45(16)
C(8)-C(7)-P(1) 126.03(13)
C(12)-C(7)-P(1) 115.36(13)
C(9)-C(8)-C(7) 120.44(17)
C(9)-C(8)-H(8) 119.8
C(7)-C(8)-H(8) 119.8
C(10)-C(9)-C(8) 120.06(18)
C(10)-C(9)-H(9) 120.0
C(8)-C(9)-H(9) 120.0
C(11)-C(10)-C(9) 120.19(17)
C(11)-C(10)-H(10) 119.9
C(9)-C(10)-H(10) 119.9
C(10)-C(11)-C(12) 119.93(17)
C(10)-C(11)-H(11) 120.0
C(12)-C(11)-H(11) 120.0
C(11)-C(12)-C(7) 120.90(17)
C(11)-C(12)-H(12) 119.6
C(7)-C(12)-H(12) 119.6
B(14)-C(13)-B(15) 62.38(11)
B(14)-C(13)-B(18) 62.30(11)
B(15)-C(13)-B(18) 113.59(12)
B(14)-C(13)-B(17) 112.89(12)
B(15)-C(13)-B(17) 112.71(12)
B(18)-C(13)-B(17) 61.97(10)
B(14)-C(13)-B(16) 112.98(12)
B(15)-C(13)-B(16) 61.69(10)
B(18)-C(13)-B(16) 113.22(12)
B(17)-C(13)-B(16) 62.03(10)
B(14)-C(13)-P(1) 121.46(10)
B(15)-C(13)-P(1) 112.18(10)
B(18)-C(13)-P(1) 126.64(11)
B(17)-C(13)-P(1) 120.64(11)
B(16)-C(13)-P(1) 111.69(10)
C(13)-B(14)-B(16)#1 105.29(13)
C(13)-B(14)-B(17)#1 105.08(13)
B(16)#1-B(14)-B(17)#1 60.73(11)
C(13)-B(14)-B(18) 58.99(10)
B(16)#1-B(14)-B(18) 59.89(11)
B(17)#1-B(14)-B(18) 108.44(13)
C(13)-B(14)-B(15) 58.92(10)
<table>
<thead>
<tr>
<th>Bonds</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(13)-B(17)-B(15)#1</td>
<td>105.37(13)</td>
</tr>
<tr>
<td>C(13)-B(17)-B(14)#1</td>
<td>105.42(13)</td>
</tr>
<tr>
<td>B(15)#1-B(17)-B(14)#1</td>
<td>60.80(10)</td>
</tr>
<tr>
<td>C(13)-B(17)-B(18)</td>
<td>58.97(10)</td>
</tr>
<tr>
<td>B(15)#1-B(17)-B(18)</td>
<td>60.09(11)</td>
</tr>
<tr>
<td>B(14)#1-B(17)-B(18)</td>
<td>108.89(13)</td>
</tr>
<tr>
<td>C(13)-B(17)-B(16)</td>
<td>59.16(10)</td>
</tr>
<tr>
<td>B(15)#1-B(17)-B(16)</td>
<td>108.19(13)</td>
</tr>
<tr>
<td>B(14)#1-B(17)-B(16)</td>
<td>59.52(10)</td>
</tr>
<tr>
<td>B(18)-B(17)-B(16)</td>
<td>108.41(13)</td>
</tr>
<tr>
<td>C(13)-B(17)-H(17)</td>
<td>120.9(10)</td>
</tr>
<tr>
<td>B(15)#1-B(17)-H(17)</td>
<td>126.2(10)</td>
</tr>
<tr>
<td>B(14)#1-B(17)-H(17)</td>
<td>122.9(11)</td>
</tr>
<tr>
<td>B(18)-B(17)-H(17)</td>
<td>122.4(10)</td>
</tr>
<tr>
<td>B(16)-B(17)-H(17)</td>
<td>118.0(10)</td>
</tr>
<tr>
<td>C(13)-B(18)-B(16)#1</td>
<td>104.75(12)</td>
</tr>
<tr>
<td>C(13)-B(18)-B(15)#1</td>
<td>104.96(12)</td>
</tr>
<tr>
<td>B(16)#1-B(18)-B(15)#1</td>
<td>60.11(10)</td>
</tr>
<tr>
<td>C(13)-B(18)-B(17)</td>
<td>59.06(10)</td>
</tr>
<tr>
<td>B(16)#1-B(18)-B(17)</td>
<td>107.46(13)</td>
</tr>
<tr>
<td>B(15)#1-B(18)-B(17)</td>
<td>59.46(11)</td>
</tr>
<tr>
<td>C(13)-B(18)-B(14)</td>
<td>58.71(10)</td>
</tr>
<tr>
<td>B(16)#1-B(18)-B(14)</td>
<td>59.48(11)</td>
</tr>
<tr>
<td>B(15)#1-B(18)-B(14)</td>
<td>107.50(13)</td>
</tr>
<tr>
<td>B(17)-B(18)-B(14)</td>
<td>107.61(13)</td>
</tr>
<tr>
<td>C(13)-B(18)-H(18)</td>
<td>119.6(11)</td>
</tr>
<tr>
<td>B(16)#1-B(18)-H(18)</td>
<td>126.7(11)</td>
</tr>
<tr>
<td>B(15)#1-B(18)-H(18)</td>
<td>125.8(11)</td>
</tr>
<tr>
<td>B(17)-B(18)-H(18)</td>
<td>119.6(11)</td>
</tr>
<tr>
<td>B(14)-B(18)-H(18)</td>
<td>120.9(11)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y,-z+1
Table 4. Anisotropic displacement parameters ($=2 \times 10^3$) for C26H30B10P2. The anisotropic displacement factor exponent takes the form: $-2\pi^2 \left[h^2 a^* a^* U_{11} + \ldots + 2 h k a^* b^* U_{12} \right]$

<table>
<thead>
<tr>
<th></th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{12}</th>
<th>U_{13}</th>
<th>U_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)</td>
<td>18(1)</td>
<td>17(1)</td>
<td>18(1)</td>
<td>0(1)</td>
<td>5(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>16(1)</td>
<td>17(1)</td>
<td>23(1)</td>
<td>2(1)</td>
<td>8(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>22(1)</td>
<td>20(1)</td>
<td>23(1)</td>
<td>2(1)</td>
<td>7(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>23(1)</td>
<td>20(1)</td>
<td>28(1)</td>
<td>-3(1)</td>
<td>6(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>23(1)</td>
<td>19(1)</td>
<td>40(1)</td>
<td>2(1)</td>
<td>12(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>30(1)</td>
<td>28(1)</td>
<td>31(1)</td>
<td>8(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>21(1)</td>
<td>2(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>20(1)</td>
<td>19(1)</td>
<td>22(1)</td>
<td>5(1)</td>
<td>6(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>25(1)</td>
<td>22(1)</td>
<td>34(1)</td>
<td>-1(1)</td>
<td>11(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>32(1)</td>
<td>27(1)</td>
<td>43(1)</td>
<td>-2(1)</td>
<td>18(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>24(1)</td>
<td>29(1)</td>
<td>44(1)</td>
<td>10(1)</td>
<td>17(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>21(1)</td>
<td>28(1)</td>
<td>36(1)</td>
<td>8(1)</td>
<td>9(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>22(1)</td>
<td>23(1)</td>
<td>27(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>16(1)</td>
<td>16(1)</td>
<td>18(1)</td>
<td>-1(1)</td>
<td>7(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>B(14)</td>
<td>17(1)</td>
<td>19(1)</td>
<td>23(1)</td>
<td>1(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>B(15)</td>
<td>21(1)</td>
<td>19(1)</td>
<td>20(1)</td>
<td>1(1)</td>
<td>9(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>B(16)</td>
<td>22(1)</td>
<td>17(1)</td>
<td>19(1)</td>
<td>-1(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>B(17)</td>
<td>17(1)</td>
<td>20(1)</td>
<td>23(1)</td>
<td>2(1)</td>
<td>9(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>B(18)</td>
<td>23(1)</td>
<td>18(1)</td>
<td>18(1)</td>
<td>-1(1)</td>
<td>7(1)</td>
<td>1(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for C26H30B10P2.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2)</td>
<td>5118</td>
<td>3057</td>
<td>5325</td>
<td>25</td>
</tr>
<tr>
<td>H(3)</td>
<td>6593</td>
<td>4446</td>
<td>5539</td>
<td>29</td>
</tr>
<tr>
<td>H(4)</td>
<td>7088</td>
<td>5160</td>
<td>3752</td>
<td>32</td>
</tr>
<tr>
<td>H(5)</td>
<td>6119</td>
<td>4478</td>
<td>1743</td>
<td>34</td>
</tr>
<tr>
<td>H(6)</td>
<td>4653</td>
<td>3079</td>
<td>1516</td>
<td>28</td>
</tr>
<tr>
<td>H(8)</td>
<td>2561</td>
<td>3485</td>
<td>4542</td>
<td>32</td>
</tr>
<tr>
<td>H(9)</td>
<td>316</td>
<td>3876</td>
<td>4983</td>
<td>39</td>
</tr>
<tr>
<td>H(10)</td>
<td>-1749</td>
<td>2880</td>
<td>4247</td>
<td>37</td>
</tr>
<tr>
<td>H(11)</td>
<td>-1592</td>
<td>1497</td>
<td>3059</td>
<td>34</td>
</tr>
<tr>
<td>H(12)</td>
<td>618</td>
<td>1125</td>
<td>2563</td>
<td>29</td>
</tr>
<tr>
<td>H(14)</td>
<td>6780(20)</td>
<td>1605(14)</td>
<td>5013(18)</td>
<td>24(5)</td>
</tr>
<tr>
<td>H(15)</td>
<td>5860(20)</td>
<td>425(14)</td>
<td>2814(18)</td>
<td>25(5)</td>
</tr>
<tr>
<td>H(16)</td>
<td>3010(20)</td>
<td>-323(14)</td>
<td>2663(19)</td>
<td>24(5)</td>
</tr>
<tr>
<td>H(17)</td>
<td>2090(20)</td>
<td>395(14)</td>
<td>4775(18)</td>
<td>24(5)</td>
</tr>
<tr>
<td>H(18)</td>
<td>4380(20)</td>
<td>1628(15)</td>
<td>6247(18)</td>
<td>28(5)</td>
</tr>
</tbody>
</table>