Electronic Supplementary Information

(b)

(c)

$$
\theta^{\prime \prime \prime}
$$

Figure 1: The unique component of (a) $[\mathrm{C} 2 \mathrm{mim}][\mathrm{Br}]$, (b) $[\mathrm{C} 2 \mathrm{mpyr}][\mathrm{Br}]$ and (c) $[\mathrm{C} 3 \mathrm{mpyr}][\mathrm{I}]$ shown with 50% probability displacement ellipsoids. The numbering of the hydrogen atoms of the disordered cations are omitted for clarity.

Figure 2 : The unique component of (a) $[\mathrm{C} 2 \mathrm{mim}]\left[\mathrm{Br}_{3}\right]$, (b) $[\mathrm{C} 2 \mathrm{mpry}]\left[\mathrm{Br}_{3}\right]$ and (c) $[\mathrm{C} 3 \mathrm{mpyr}]\left[\mathrm{I}_{3}\right]$ shown with 50% probability displacement ellipsoids and H atoms as spheres of arbitrary size. The second part of the [C3mpyr][I_{3}] ring is shown with symmetry equivalent atoms [symmetry code: $\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$] to complete the ring and both atoms of the disordered C4/C4' are shown. Numbering of the hydrogen atoms of the disordered cation is omitted for clarity.

