10.1071/CH08563_AC

© CSIRO 2009

Australian Journal of Chemistry, 2009, 62(12), 1675-1683

ACCESSORY PUBLICATION

Synthesis and Structure of Novel Ru^{II}-N≡C-Me Complexes and their Activity Towards Nitrile Hydrolysis: An Examination of Ligand Effects.

Joaquim Mola,^{a,‡} David Pujol,^{a,‡} Montserrat Rodríguez,^{a,‡} Isabel Romero,^{*,a,‡} Xavier Sala,^b Néstor Katz^{+,c} Teodor Parella,^{d,†} Jordi Benet-Buchholz,^b Xavier Fontrodona,^{a,†} and Antoni Llobet.^{*,b,d,‡}

^{*a*} Departament de Química and Serveis Tècnics de Recerca (STR), Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain. ^{*b*} Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, E-43007 Tarragona, Spain, ^{*c*} Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán Ayacucho 491, (T4000INI) San Miguel de Tucumán, Argentina, ^{*d*} Departament de Química and Servei de RMN Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain.

[‡] Departament de Química

⁺ Serveis Tècnics de Recerca

h	4	h	-	h	6
bond/angle	4	bond/angle	5	bond/angle	0
Ru(1)-N(1)	2,207(10)	Ru(1)-N(1)	2,120(4)	Ru(1)-N(1)	2,129(2)
Ru(1)-N(2)	2,019(9)	Ru(1)-N(2)	2,167(4)	Ru(1)-N(2)	2,183(2)
Ru(1)-N(3)	2,162(14)	Ru(1)-N(3)	2,120(4)	Ru(1)-N(3)	2,156(2)
Ru(1)-N(4)	1,952(10)	Ru(1)-N(4)	2,020(4)	Ru(1)-P(1)	2,2961(7)
Ru(1)-N(5)	1,984(16)	Ru(1)-P(1)	2,3134(15)	Ru(1)-P(2)	2,3207(7)
Ru(1)-N(6)	2,185(9)	Ru(1)-P(2)	2,2961(13)	Ru(1)-O(1)	2,107(2)
N(6)-C(26)	1.162(12)	N(4)-C(42)	1.123(6)		
N(1)-Ru(1)-N(2)	78,4(8)	N(1)-Ru(1)-N(2)	80,21(14)	N(1)-Ru(1)-N(2)	79,83(8)
N(3)-Ru(1)-N(2)	85,4(4)	N(3)-Ru(1)-N(2)	80,90(15)	N(3)-Ru(1)-N(2)	80,23(8)
N(6)-Ru(1)-N(1)	96,3(3)	N(4)-Ru(1)-N(1)	92,38(15)	O(1)-Ru(1)-N(1)	86,76(8)
N(6)-Ru(1)-N(2)	174,6(5)	N(4)-Ru(1)-N(2)	171,29(15)	O(1)-Ru(1)-N(2)	161,94(8)
N(6)-Ru(1)-N(3)	90,9(5)	N(4)-Ru(1)-N(3)	93,30(16)	O(1)-Ru(1)-N(3)	85,56(8)
N(1)-Ru(1)-N(4)	98,0(4)	N(1)-Ru(1)-P(1)	99,38(12)	N(1)-Ru(1)-P(1)	95,81(6)
N(2)-Ru(1)-N(4)	97,1(4)	N(2)-Ru(1)-P(1)	100,58(11)	N(2)-Ru(1)-P(1)	96,46(6)
N(3)-Ru(1)-N(4)	177,5(5)	N(3)-Ru(1)-P(1)	177,96(12)	N(3)-Ru(1)-P(1)	174,83(6)
N(6)-Ru(1)-N(4)	86,7(4)	N(4)-Ru(1)-P(1)	85,06(13)	O(1)-Ru(1)-P(1)	96,87(6)
N(5)-Ru(1)-N(4)	77,8(5)	P(2)-Ru(1)-P(1)	84,09(5)	P(2)-Ru(1)-P(1)	83,25(3)
N(1)-Ru(1)-N(5)	175,8(7)	N(1)-Ru(1)-P(2)	176,05(12)	N(1)-Ru(1)-P(2)	178,81(6)
N(2)-Ru(1)-N(5)	101,8(5)	N(2)-Ru(1)-P(2)	97,35(10)	N(2)-Ru(1)-P(2)	101,00(6)
N(3)-Ru(1)-N(5)	101,8(5)	N(3)-Ru(1)-P(2)	97,13(11)	N(3)-Ru(1)-P(2)	101,23(7)
N(6)-Ru(1)-N(5)	82,7(5)	N(4)-Ru(1)-P(2)	89,79(12)	O(1)-Ru(1)-P(2)	92,62(6)

Table S1. Selected bond lengths and angles for complexes 4, 5, and 6.

Figure captions for supplementary information

Figure S1. NMR (500 MHz, C_2D_6O , 25 °C) spectra for complex **4**: a) ¹H, b) COSY, c) HSQC ¹H-¹³C, d) NOESY, e) ¹H-¹³C HMBC, f) ¹H-¹⁵N HMBC.

Figure S2. NMR (500 MHz, C_2D_6O , 25°C) spectra for complex **5**: a) ¹H, b) COSY, c) HSQC ¹H-¹³C, d) NOESY, e) ¹H-¹³C HMBC, f) ³¹P (101.26 MHz).

Figure S3. ¹H-NMR (200 MHz, C_2D_6O , 25°C) spectra for complex 6.

Figure S4. CV for: a) **4**, registered in $CH_3CN + 0.1M$ TBAH, b) **5**, registered in $CH_3CN + 0.1M$ TBAH, c) **5'**, registered in $CH_2Cl_2 + 0.1M$ TBAH.

Figure S5. UV-visible spectrum of $[Ru(NO_3)(bpea)(dppe)]^+$, 6 registered in CH_2Cl_2 , at room temperature.

Figure S6. a) UV-visible spectrum of $[Ru(OH)(bpea)(bpy)]^+$, and $[Ru(bpea)(bpy)(H_2O)]^{2+}$ registered after the addition of a drop of concentrated HCl.

Figure S7. a) Spectra obtained in aqueous basic solutions of: a) $[Ru(bpea)(dppe)(CH_3CN)]^{2+}$, **5**, at different times (*[Ru]* = 5 x 10⁻⁵ M; *pH* = 13; *I* = 0.1 M; *T* = 25 °C). The inset shows plots of λ = 332 nm vs. time during nitrile hydrolysis and b) Spectra obtained in aqueous basic solutions of: a) [Ru (phen)(MeCN)([9]aneS_3)]^{2+}, **7**, at different times (*[Ru]* = 5 x 10⁻⁵ M; *pH* = 13; *I* = 0.1 M; *T* = 25 °C). The inset shows plots of λ = 437 nm vs. time during nitrile hydrolysis.

Figure S8. Eyring's plot for the basic hydrolysis of CH₃CN in a) 4 b) 5 and c) 7.

Figure S9. Dependece of the hydrolysis rate constants k_{obs} with [OH⁻]: a) for **4** at 25°C b) for **5** at 35°C.

Figure S10. Schematic view of a) $Ru(bpea)(bpy)(CH_3CN)]^{2+}$, **4**, b) $Ru(bpea)(dppe)(CH_3CN)]^{2+}$, **5**, and c) $Ru(NO_3)(bpea)(dppe)]^+$, **6**, and their corresponding axial angles values. H...O hydrogen bonding distance involving the nitrate ligand is indicated in the case of complex **6**.

Figure S1.

c)

ppm

'|'

Figure S4

a)

Figure S8

a)

a)

b)

Figure S10

a)

b)

