10.1071/CH09142_AC

© CSIRO 2009

Accessory Publication: Australian Journal of Chemistry, 2009, 62(7), 692-699

Accessory Publication

Synthesis and photophysical properties of a conformationally-flexible mixed porphyrin star pentamer

Toby D. M. Bell,^{*a*} *Sheshanath V. Bhosale*,^{*b*} *Kenneth P. Ghiggino*,^{*a*} *Steven J. Langford*,^{*b,c*} *and Clint P. Woodward*^{*b*}

^ASchool of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
^BSchool of Chemistry, Monash University, Clayton, VIC 3800, Australia.
^CCorresponding author. Email: S.Langford@sci.monash.edu.au

Figure AI 1. MALDI-TOF MS (no matrix) of porphyrin pentamer 1.

(a) Calculated Spectrum

(b) Experimental Spectrum

Figure AI 2. a) Relative fraction of light emitted by each fluorescence decay component for 1 in toluene as a function of detection wavelength, b) data in (a) weighted by total steady state emission of 1 in toluene at each wavelength, and c) expansion of (b). Relative fraction of light emitted by a decay component, *i*, is given by $a_i\tau_i/\Sigma a_i\tau_i$ where a_i is the pre-exponential factor for lifetime component τ_i .

