Accessory Publication

RAFT-Mediated Emulsion Polymerization of Styrene in Water using a Reactive Polymer Nanoreactor.

Carl N. Urbani and Michael J. Monteiro*

Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia QLD

4072, Brisbane, Australia

e-mail: <u>m.monteiro@uq.edu.au</u>

EXPERIMENTAL

Materials

All reagents and solvents were of analytical grade and used as received unless otherwise stated. Styrene (STY, 99 %, Aldrich) and dimethylacrylamide (DMA, 99 %, Aldrich) were passed through a column of basic alumina (activity I) to remove inhibitor. N-isopropylacrylamide (97 %, Aldrich) was recrystallised from hexane prior to use. Azobisisobutyronitrile (AIBN) and 1,1'-Azobis(cyanocyclohexane) (Vazo88) were recrystallized twice from methanol prior to use. MilliQ Water (18.2 M Ω cm⁻¹) was generated using a Millipore MilliQ-Academic Water Purification System.

Synthesis of chain transfer agent, methyl 2-(butylthiocarbonothioylthio)propanoate, 1

MCEBTTC, 1

To a stirred solution of 1-butanethiol (10 mL, 0.093 mol) and triethylamine (14.3 mL, 0.103 mol) in dichloromethane (100 mL) under nitrogen atmosphere was added dropwise carbondisulfide (6.18 mL, 0.103 mol) in dichloromethane (50 mL) over a period of 30 min at 0 °C. The solution gradually turned yellow during the addition. After complete addition the solution was stirred at room temperature for 1 h. Methyl bromopropionate (11.46 mL, 0.103 mol) in dichloromethane (50 mL) was then added dropwise to the solution over a period of 30 min and the solution stirred for 2 h. The dichloromethane was removed under nitrogen and the residue dissolved in diethylether. The solution was then washed with cold 10 % HCl solution (3 x 50 mL) and MilliQ water (3 x 50 mL) and then dried over anhydrous MgSO₄. The ether was removed under vacuum and the residual yellow oil was purified by column chromatography (9:1 petroleum ether/ethyl acetate on silica, second band).

¹H NMR (CDCl₃) δ 0.92 (tr, *J* = 7.5 Hz, 3H, CH₃), 1.43 (mult, *J* = 7.5 Hz, 2H, CH₂), 1.62 (d, *J* = 7.5 Hz, 3H, CH₃), 1.65 (quin, *J* = 7.5 Hz, 2H, CH₂), 3.36 (tr, *J* = 7.5 Hz, 2H, CH₂), 3.73 (s, 3H, CH₃), 4.84

(quad, *J* = 7.5 Hz, 1H, CH); ¹³C NMR (CDCl₃) δ 13.55, 16.91, 22.02, 29.89, 36.94, 47.68, 52.82, 171.63 (CH-C(=O)-O), 221.99 (S-C(=S)-S)

Synthesis of PDMA₆₈-SC(=S)SC₄H₉

Dimethylacrylamide (DMA, 9.02 g, 9.10 x 10^{-2} mol), AIBN (0.0187 g, 1.1419 x 10^{-4} mol), MCEBTTC (0.337 g, 1.34 x 10^{-3} mol) and DMSO (18 g) were added to a 50 mL round bottom flask equipped with magnetic stirrer bar. The mixture was deoxygenated by purging with Argon for 20 min then heated at 60 °C for 15 h. The solution was cooled, diluted with dichloromethane and washed with brine. The dichloromethane was then dried over anhydrous MgSO₄, filtered and reduced in volume by rotary evaporation. The polymer was recovered by precipitation into hexane/toluene 90/10, filtered and dried under vacuum for 24 h at 25 °C (M_n = 4840, PDI = 1.11 (SEC-RI calibrated using PSTY Standards)). ¹H NMR (Figure S1) gave 68 DMA units; M_{n,NMR} = 6990.

Synthesis of P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉ (MacroCTA)

N-isopropylacrylamide (NIPAM, 3.11 g, 2.75 x 10^{-2} mol), AIBN (0.0079 g, 4.84 x 10^{-5} mol), PDMA₄₉-SC(=S)SC₄H₉ (2.52 g, 3.6 x 10^{-4} mol) and DMSO (5.4 g) were added to a 25 mL round bottom flask equipped with magnetic stirrer bar. The mixture was deoxygenated by purging with Argon for 20 min then heated at 60 °C for 1.5 h. The solution was cooled, diluted with dichloromethane and washed with brine. The dichloromethane was then dried over anhydrous MgSO₄, filtered then reduced in volume by rotary evaporation. The polymer was recovered by precipitation into hexane/toluene 90/10, filtered and dried under vacuum for 24 h at 25 °C (M_n = 16800, PDI = 1.13) (SEC-Triple Detection). ¹H NMR (Figure S1) gave 68 DMA units and 73 NIPAM units; M_{n,NMR} = 15250.

Cleavage of -SC(=S)SC₄H₉ end group from P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉ (MacroSTAB)

 $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (1.75 g, 1.15 x 10⁻⁴ mol), Vazo88 (0.310 g, 1.27 x 10⁻³ mol), and DMSO (10 g) were added to a 25 mL round bottom flask equipped with magnetic stirrer bar. The mixture was deoxygenated by purging with Argon for 20 min then heated at 100 °C for 6 h. The solution was cooled, diluted with dichloromethane and washed with brine. The dichloromethane was then dried over anhydrous MgSO₄, filtered then reduced in volume by rotary evaporation. The polymer was recovered by precipitation into hexane/toluene 90/10, filtered and dried under vacuum for 24 h at 25 °C.

Styrene solution polymerization in the presence of P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉ (MacroCTA)

 $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (0.299 g, 1.96 x 10⁻⁵ mol) in DMF (1.51 g) was added to a 10 mL Schlenk flask equipped with magnetic stirrer. Styrene (5.012 g, 4.82 x 10⁻² mol) and AIBN (3.4 x 10⁻⁴ g, 2.07 x 10⁻⁶ mol) were added to the solution and the solution purged with argon for 10 min. The polymerization was commenced by heating the Schlenk flask in an oil bath at 70 °C. Samples were taken at regular intervals for determination of monomer conversion and molecular weight distribution.

RAFT- mediated polymerization of styrene with P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉ (MacroCTA) in water.

A typical polymerisation is as follows: $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (0.100 g, 6.56 x 10⁻⁶ mol), ammonium persulphate (4.5 x 10⁻⁴ g, 1.97 x 10⁻⁶ mol) and MilliQ water (5 g) were added to a 10 mL schlenk flask equipped with magnetic stirrer. After dissolution of the $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$, styrene (0.103 g, 9.90 x 10⁻⁴ mol) was added to the mixture. The mixture was deoxygenated by purging with argon for 10 min then the polymerization commenced by heating the Schlenk flask in an oil bath at 70 °C. Samples were taken at regular intervals for determination of monomer conversion, molecular weight distribution and particle size.

RAFT-mediated polymerization of styrene with P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉ (MacroCTA) and additionally stabilized, P(DMA₆₈-b-NIPAM₇₃) (MacroSTAB), in water.

A typical polymerisation is as follows: $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (0.101 g, 6.62 x 10⁻⁶ mol), $P(DMA_{68}-b-NIPAM_{73})$ (0.101 g, 6.70 x 10⁻⁶ mol), ammonium persulphate (4.6 x 10⁻⁴ g, 2.02 x 10⁻⁶ mol) and MilliQ water (5 g) were added to a 10 mL schlenk flask equipped with magnetic stirrer. After dissolution of the $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ and $P(DMA_{68}-b-NIPAM_{73})$, styrene (0.749 g, 7.20 x 10⁻³ mol) was added to the mixture. The mixture was deoxygenated by purging with argon for 10 min then the polymerization commenced by heating the Schlenk flask in an oil bath at 70 °C. Samples were taken at regular intervals for determination of monomer conversion, molecular weight distribution and particle size. The polymer from the dried final latex was dissolved in tetrahydrofuran then precipitated into water prior to analysis by SEC.

Mechanistic Study using Dynamic Light Scattering

 $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (0.024 g, 1.57 x 10⁻⁶ mol) and MilliQ water (1.15 g) were added to a glass cuvette with stopper. After dissolution of the $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$, styrene (0.169 g, 1.63 x 10⁻³ mol) was added to the mixture. The cuvette was purged with Argon for 5 min then heated and stirred in a water bath at 70 °C for 30 min. Clear phase separation of the styrene from the water solution was observed. A deoxygenated solution of ammonium persulphate (1.1 x 10⁻⁴ g, 4.82 x 10⁻⁷ mol) in water (0.05 g) was added under Argon, and the cuvette stoppered and placed in a dynamic light scattering analyser at 70 °C. The particle size was measured at regular intervals. After 35 min polymerization time phase separation of the styrene was still evident. The cuvette was exposed to oxygen, re-stoppered then shaken for approximately 1 min. The cuvette was returned to the DLS analyser and the particle size measured at regular intervals.

The above polymerization was repeated on a 4.2 fold mass scale-up. After 35 min polymerization time at 70 °C, the whole reaction mixture was dried and conversion was determined gravimetrically. (x = 0.016, $M_{n,theory} = 19070$, $M_{n,SEC} = 19500$, PDI = 1.09).

Size Exclusion Chromatography (SEC)

Size Exclusion Chromatography measurements were performed using a Waters Alliance 2690 Separations Module equipped with an auto-sampler, Differential Refractive Index (RI) detector and a Photo Diode Array (PDA) detector connected in series. HPLC grade tetrahydrofuran was used as eluent at flow rate 1 mL/min. The columns consisted of two 7.8 x 300 mm Waters linear Ultrastyragel SEC columns connected in series.

Absolute Molecular Weight Determination by Triple Detection-SEC

Absolute molecular weights of polymers were determined using a Polymer Labs GPC50 Plus equipped with dual angle laser light scattering detector, viscometer and differential refractive index detector. HPLC grade dimethylacetamide containing 0.03 wt-% LiCl was used as eluent at flow rate 1 mL/min. Separations were achieved using two PLGel Mixed B (7.8 x 300 mm) SEC columns connected in series held at a constant temperature of 50 °C. The triple detection system was calibrated using a 2 mg/mL PSTY Standard M_{wt} 110 K in DMAc containing 0.03 wt% LiCl (dn/dc = 0.160 and IV = 0.5809 mL/g).

Dynamic Light Scattering (DLS)

Dynamic Light Scattering measurements were performed using a Malvern Zetasizer 3000HS. The sample refractive index (RI) was set at 1.59 for polystyrene. The dispersant viscosity and RI were set to 0.89 and 0.89 Ns/m², respectively. The number-average particle diameter was measured for each sample.

Transmission Electron Microscopy (TEM)

A typical TEM grid preparation was as follows: A particle solution was diluted with MilliQ water to approximately 0.05 wt-%. A 10 μ L aliquot of the solution was then allowed to air dry onto a formvar precoated copper TEM grid. The particles were characterized using a JEOL-1010 transmission electron microscope utilizing an accelerating voltage of 80 kV with spot size 2, at ambient temperature.

Nuclear Magnetic Resonance (NMR) Spectroscopy

All NMR spectra were recorded on a Bruker DRX 300 MHz spectrometer using an external lock (CDCl₃) and utilizing the solvent peak as an internal reference. Nuclear magnetic resonance spectra were recorded by decoupling the protons and all chemical shifts are given as positive downfield relative to the CDCl₃ signal.

Figure S1: ¹HNMR (300 MHz, CD₃OD) spectrum of (i) PDMA₆₈-SC(=S)SC₄H₉, a (δ 2.82, 320H), b (δ 3.63, 3H), c (δ 3.32, 2H), M_w ~ 6990 and (ii) P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉, a (δ 2.82, 320H), b (δ 1.11, 385 H), c (δ 3.96, 71H), M_w ~ 15250.

Figure S2: Overlaid size exclusion chromatography with ultraviolet visible detection at 310 nm detailing the loss of -SC(=S)S- chromophore after the reaction of $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ with Vazo88 in high excess. The SEC-UV chromatograms show there is near complete loss of RAFT end groups.

Figure S3: Overlaid absolute molecular weight size exclusion chromatograms analyzed by triple detection SEC for styrene polymerizations mediated with $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (macroCTA) in water at 70 °C, EXPT's 1 – 10.

Figure S4: Transmission electron micrographs showing the uniform particle size and core-shell morphology of polymer particles generated from EXPT 4.

Table S1: Styrene Polym with $P(DMA_{68}$ -b-NIPAM₇₃)-SC(=S)SC₄H₉ macroCTA initiated with
ammonium persulphate (APS) in water (5 g) at 70 °C. APS/macroCTA was maintained at 1/3.

EXPT	STY	M _{n,target}	macroCTA	Time	X	M _{n,theory} ^b	M _{n,SEC} ^a	PDI ^a	D _h (nm)	Nc
	(g)		(g)	(min)					(PDI)	$(x 10^{17})$
1	0.103	30 K	0.100	15	0.44	24380	20340	1.11	38 (0.072)	8.56
				30	0.76	29850	34310	1.08	38 (0.056)	9.99
				45	0.81	30660	35900	1.14	39 (0.066)	9.74
2	0.207	50 K	0.100	15	0.52	34790	35140	1.20	44 (0.055)	7.61
				30	0.89	47490	48900	1.15	48 (0.024)	8.22
				45	0.95	49110	50040	1.16	48 (0.034)	8.32
3	0.331	70 K	0.101	15	0.46	41880	46650	1.18	54 (0.082)	5.14
				30	0.84	63140	71790	1.12	62 (0.012)	5.18
				45	0.85	63320	78130	1.15	62 (0.023)	5.16
				After precipitation		79830	1.12			
4	0.704	140 K	0.101	15	0.18	38240	37550	1.37	57 (0.081)	3.90
				30	0.41	64340	78540	1.19	90 (0.029)	1.72
				45	0.62	89340	98570	1.16	97 (0.025)	1.97
				60	0.74	101890	115160	1.15	98 (0.025)	2.19
				90	0.84	113810	138580	1.20	111 (0.010)	1.73
				A	fter precipi	tation	134330	1.17		
5	1.692	300 K	0.101	15	0.08	41100	38650	1.30	61 (0.141)	3.37
				30	0.20	71710	71460	1.18	107 (0.080)	1.15
				45	0.27	91470	88590	1.18	162 (0.018)	0.43
				65	0.33	108760	105900	1.17	167 (0.095)	0.48
				120	0.43	133850	142700	1.14	168 (0.198)	0.60
				200	0.45	137100	142950	1.19	-	-
				A	fter precipi	tation	145340	1.16		
6	0.797	70 K	0.251	15	0.37	36590	32730	1.30	49 (0.047)	15.0
				30	0.85	61960	64280	1.28	63 (0.015)	13.0
				45	0.96	67660	72590	1.23	63 (0.019)	14.1
	1.027	140 IZ	0.050	A	fter precipi	tation	11120	1.21	(2 (0 0 41)	0.70
7	1.837	140 K	0.250	15	0.21	42400	38230	1.38	62 (0.041)	8.72
				30	0.51	/9210	/6930	1.17	88 (0.181)	6.30
				45	0.70	102050	96240	1.10	99 (0.010)	6.01
				60	0.83	118040	103090	1.22	102(0.014)	6.68
				90	0.90	120390	133810	1.25	104 (0.155)	0.97
0	1 254	300 K	0.250	15 A		36510	27700	1.15	42 (0 324)	22.5
o	4.234	300 K	0.230	15 30	0.00	76220	60060	1.37	42(0.324) 104(0.070)	22.5
				45	0.21	98960	89350	1.22	104(0.079) 146(0.348)	1.80
				65	0.25	114520	100720	1.10	163 (0 339)	1.58
				90	0.35	128890	125140	1.17	189 (0 234)	1.20
				120	0.43	136340	136240	1 19	202 (0 195)	1.07
				120 A	fter precipi	tation	146410	1 14	202 (0.193)	1.07
9 ^c	1.712	300 K	0.100	15	0.09	43810	25380	2.51	41 (0.118)	16.0
-				35	0.32	94000	87260	1.70	82 (0.130)	4.54
				55	0.51	134870	161180	1.45	98 (0.120)	4.01
				90	0.77	190750	223180	1.38	110 (0.074)	4.39
				After pre	cipitation	233460 ^b	273640	1.21	(
				180	0.90	219060	257770	1.53	120 (0.049)	4.06
				After pre	ecipitation	266150 ^b	336240	1.24		
10 ^d	4.20	300 K	0.251	15	0.08	41600	28560	1.97	42 (0.276)	36.3
	0		5.201	30	0.30	87800	86630	1.40	78 (0.092)	13.9
				47	0.55	141230	134170	1.26	100 (0.452)	13.4
				60	0.74	181880	162700	1.22	101 (0.156)	20.4
						223700 ^b	178620	1.15	(

^aAbsolute molecular weight values determined using triple detection SEC. ^bM_{n,theory} was calculated using $M_n = ([M]_ox / (([RAFT]_o - [RAFT]_x) + af([I]_o - [I]_x))) + M_{n,macroCTA}$. ^cContained macrostabilizer (0.10 g). ^dContained macrostabilizer (0.25 g). Note: $M_{n,theory}$ for EXPT's 9 and 10 were calculated using the following equation, $M_{n,theory} = (\mu_1^{macroCTA} * M_{wt,mon} + \mu_1^{macroSTAB} * M_{wt,mon}) / (\mu_0^{macroCTA} + \mu_0^{macroSTAB})$.

Use of moments to determine M_n(Theory)

We used the method of moments in this work to determine the M_n (Theory) for experiments 9 and 10. This allows us to calculate the M_n for the combination of two separate molecular weight distributions, (1) macrostabilizer (macroSTAB) and (2) chain extension of stryrene to the MacroCTA (in this work we refer to this simply as the MacroCTA). The corresponding moments for the each distribution are as follows:

$$\mu_i^{macroSTAB} = \sum_{r=0}^{\infty} r^i [P_r]$$
$$\mu_i^{MacroCTA} = \sum_{r=0}^{\infty} r^i [P_r RAFT]$$

where P_r and P_r RAFT are the macrostabilizer and MacroCTA, respectively, with chain length r. The zero and first moments were given by

$$\mu_0^Y = [Y](molL^{-1}) \mu_1^Y = < r > \mu_0^Y$$

where Y is any polymeric species.

The number-average molecular weight, M_n, of these two combined distributions is:

$$M_{n} = \frac{\mu_{1}^{MacroCTA} < mw_{mon,MacroCTA} > +\mu_{1}^{macroSTAB} < mw_{mon,macroSTAB} >}{\mu_{0}^{MacroCTA} + \mu_{0}^{macroSTAB}}$$

Where $\langle mw_{mon,MacroCTA} \rangle$ and $\langle mw_{mon,macroSTAB} \rangle$ are the weighted average of the mw of the monomer units in the polymer.

Table S2: Particle size of $P(DMA_{68}-b-NIPAM_{73})-SC(=S)SC_4H_9$ (macroCTA) in water at 70 °C determined by dynamic light scattering.

Sample	macroCTA (g)	Water (g)	D _h @ 70 °C (nm)	PDI	N _c (x 10 ¹⁷)
1	0.0125	5	25.3	0.013	7.45
2	0.05	5	20.8	0.038	53.2
3	0.10	5	20.2	0.061	117
4	0.25	5	19.0	0.178	348

Table S3: Data for the solution polymerization of STY (5.012 g) in the presence of P(DMA₆₈-b-NIPAM₇₃)-SC(=S)SC₄H₉ (0.299 g), initiated with AIBN (0.34 mg) in DMF (1.60 g) at 70 °C

Time (h)	X	M _{n,theory}	M _{n,SEC} ^a	PDI ^a
2	0.02	22880	72400	1.68
4	0.05	31330	78560	1.84
8	0.09	43220	86040	1.81
16	0.18	67600	64750	1.82
23	0.24	85740	99840	1.51

^aAbsolute molecular weight values determined using triple detection SEC.