Total Synthesis of (\pm)-Vibsanin E.

Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig

M. Williams

Supporting Information
General Methods S-2
Experimental S-2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S-7
Comparison: ${ }^{1} \mathrm{H}$ Spectra - Vibsanin E S-23
Comparison: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Table of Spectral Data S-24

General Methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r spectra were recorded on Bruker AV400 (400.13MHz; 100.62 MHz), AV300 (300.13 MHz; 75.47 MHz) and DRX500 (500.13 MHz; 125.76 MHz) instruments in the solvents specified. Coupling constants are given in Hz and chemical shifts are expressed as δ values in ppm. High resolution electrospray ionisation (HRESIMS) accurate mass measurements were recorded in positive mode on a Bruker MicrOTOF-Q (quadrupole - Time of Flight) instrument with a Bruker ESI source. Accurate mass measurements were carried out with external calibration using sodium formate as reference calibrant. Low and high resolution electron impact ionisation mass measurements were recorded on a Finnigan MAT 900XL-TRAP (EI 70 eV) using perfluorokerosene-H as reference calibrant. Column chromatography was undertaken on silica gel (Flash Silica gel 230-400 mesh), with distilled solvents. Anhydrous solvents were prepared according to Perin and Armarego, 'Purification of laboratory solvents', 3 ' ${ }^{\text {rd }}$ Ed. Tetrahydrofuran was freshly distilled from a sodium/benzophenone still. Melting points were determined on a Fischer Johns Melting Point apparatus and are uncorrected. Fine chemicals were purchased from the Aldrich Chem. Co. Microwave irradiation was conducted with a CEM Discover microwave in 10 mL pressurized vials. The tricyclic intermediate $\mathbf{1 0}$ was prepared by the procedure described in Davies, H. M. L.; Loe, Ø.; Stafford, D. G. Org. Lett. 2005, 5561.

Conjugate addition of $\mathrm{LiCH}_{2} \mathrm{OMOM}$ to $\mathbf{1 0}$

To a stirred solution of $n-\mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{OMOM}^{\mathrm{i}}(1.56 \mathrm{~g}, 4.28 \mathrm{mmol})$ in anhydrous THF (10 mL) was added a solution of $n-\mathrm{BuLi}\left(2.90 \mathrm{~mL}, 4.28 \mathrm{mmol}, 1.48 \mathrm{M}\right.$ in hexanes) at $-78^{\circ} \mathrm{C}$ under an argon atmosphere. After 5 minutes the reaction mixture was transferred via a cannula to a solution of TMEDA ($0.97 \mathrm{~mL}, 6.42 \mathrm{mmol}$) and $\mathrm{CuI}(410 \mathrm{mg}, 2.14 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 30 mins after which time $\mathrm{TMSCl}(810 \mu \mathrm{~L}, 6.42 \mathrm{mmol})$ was added dropwise followed by a solution of $\mathbf{1 0}(500 \mathrm{mg}, 2.14 \mathrm{mmol})$ in THF (5 mL). The reaction was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 hour then warmed slowly to $-20^{\circ} \mathrm{C}$ and stirred for a further 45 minutes. The mixture was then poured into ice cold saturated sodium bicarbonate solution $(25 \mathrm{~mL})$ and extracted with ether (3 $\times 25 \mathrm{~mL}$). The combined organic layer was then washed with a 10% aqueous ammonia solution (2 $\times 20 \mathrm{~mL})$ followed by brine $(15 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to provide an oil which was purified by flash chromatography (1:20 ether:pet. spirit) which gave $\mathbf{1 2}$ as a colourless oil ($745 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.26(\mathrm{~s}, 9 \mathrm{H}), 0.96-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}$, $3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ $2.12(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{qd}, J=13.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J 11.4,2.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ $(\mathrm{dd}, J=9.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=11.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{AB}$,
$J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.24$ (ddd, $J=7.64,2.59,0.75 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.5$ (3C), 23.8, 24.3, 28.1, 31.9, 32.6, 32.8, 40.7, 43.3, 43.8, 44.6, 48.1, 55.0, 63.5, 71.5, 73.2, 96.9, 111.7, 152.9. GC/MS EI m/z (\%) 382 (${ }^{+}$, 17) 367 (2), 320 (3), 307 (10), 279 (17), 249 (44), 167 (7), 73 (100), 45 (64). HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}^{+}: 382.2539\right.$, Found: 382.2538.

Allylation of $\mathbf{1 2}$

A solution of methyl lithium in diethyl ether $(0.73 \mathrm{~mL}, 0.94 \mathrm{mmol}, 1.3 \mathrm{M})$ was added dropwise to a solution of $12(200 \mathrm{mg}, \quad 0.524 \mathrm{mmol})$ in anhydrous THF (5 mL) at $-20^{\circ} \mathrm{C}$ under an argon atomsphere. The reaction was stirred for 45 minutes, cooled to $-78{ }^{\circ} \mathrm{C}$ then HMPA ($0.45 \mathrm{~mL}, 2.02 \mathrm{mmol}$) and allyl bromide ($560 \mathrm{mg}, 4.62 \mathrm{mmol}$) were added sequentially by dropwise addition. The reaction was stirred for 45 minutes and then warmed to $-40^{\circ} \mathrm{C}$ and stirred for a further 45 minutes. The reaction was quenched by pouring into ice cold saturated sodium bicarbonate solution (25 mL) and extracted with ether $(3 \times 25 \mathrm{~mL})$. The combined organic layer was then washed with an aqueous 10% lithium chloride solution $(20 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$ then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated in vacuo which afforded an oil that was purified by flash chromatography (1:20 ether:pet. spirit) to give $\mathbf{1 3}$ ($137 \mathrm{mg}, 74 \%$) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.73(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=9.3,7.0 \mathrm{~Hz}$, 1 H), 3.51 (ddd, $J=11.5,2.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (dd, $J=11.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13($ app. qd, $J=10.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29$ (app. qd, $J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (ddt, $J=17.3,10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.5,24.4,27.7,31.8,32.3,32.4,40.5,42.1,42.9,44.3,47.2,55.1,62.7,68.4,71.5$, $73.5,96.6,103.2,116.1,134.3,155.3$. HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}\right]^{+}: 350.2452$, Found: 350.2452 .

Microwave promoted Claisen rearrangement of $\mathbf{1 3}$

A solution of O-allylated material $\mathbf{1 3}(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ in anhydrous toluene $(6 \mathrm{~mL})$ was heated under microwave irradiation for 5 hours (maximum temperature $185^{\circ} \mathrm{C}, 300 \mathrm{~W}$). The solvent was removed in vacuo which afforded an oil that was purfied by flash chromatography (1:10 ether:pet. spirit) to give C-allylated isomers $\mathbf{1 4}(13.5 \mathrm{mg}, 34 \%)$ and $\mathbf{1 5}(11 \mathrm{mg}, 26 \%)$ as colourless oils. Syn Isomer $14{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.33(\mathrm{~m}$, $1 \mathrm{H}), 1.39$ (ddd, $J=14.1,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.81(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{dt}, J=$ $15.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{td}, J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.87$ (m, 1H), 3.28-3.32 (m, 1H), 3.29 (s, 3H), 3.45 (dd, $J=10.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.7,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.74$ (dddd, $J=16.7,10.1,8.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.8,24.3,27.1,30.1,33.0,33.7,33.9,39.4,39.7,41.1,48.7,51.8,52.2,55.7$, 64.6, 65.4, 73.8, 96.6, 116.3, 137.5, 214.3. HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}\right]^{+}: 350.2452$, Found: 350.2461 Anti Isomer $15{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.03-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}$, $3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dt}, J=14.9,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.52-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{td}, J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.63$ (dd, $J=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{AB}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.85-4.99(\mathrm{~m}, 2 \mathrm{H})$, 5.64 (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,23.3,27.9,29.5,30.3$, 33.1, 34.1, 42.1, 42.7, 43.5, 45.3, 50.9, 50.9, 56.1, 59.0, 67.3, 72.9, 97.0, 116.2, 137.1, 214.9. GC/MS EI m/z (\%) ($\mathrm{M}^{+}-15,1$), 320 (0.3), 288 (1), 275 (10), 247 (0.3), 189 (1), 135 (6), 79 (14), 45 (100). HRMS Calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}\right]^{+}: 350.2452$, Found: 350.2466.

Epimerisation of the Syn isomer 14

A mixture of $\mathbf{1 4}(86 \mathrm{mg}, 0.25 \mathrm{mmol})$ in a methanolic solution of potassium carbonate ($2 \mathrm{~mL}, 0.15$ M) was heated under microwave irradiation for 90 min (maximum temperature $100{ }^{\circ} \mathrm{C}, 50 \mathrm{~W}$). The solution was diluted with ether and then the mixture was filtered through a short plug of Celite ${ }^{\mathrm{TM}}$. The resulting solution was concentrated in vacuo then purifed by flash chromatography (1:10 ether:pet. spirit) to afford $\mathbf{1 5}(44 \mathrm{mg}, 51 \%)$ and recovery of $\mathbf{1 4}$ ($33 \mathrm{mg} 38 \%$).

Deprotection of 15

A mixture of $\mathbf{1 5}(25 \mathrm{mg}, 71 \mu \mathrm{~mol})$ in THF (1 mL), water $(0.5 \mathrm{~mL})$ and aqueous hydrochloric acid $(100 \mu \mathrm{~L}, 10 \mathrm{M})$ was heated under microwave irradiation for 45 min (maximum temperature $100^{\circ} \mathrm{C}$, 50 W). The solution was concentrated in vacuo then purifed by flash chromatography ($1: 1$ ether:pet. spirit) to provide the alcohol $20(17 \mathrm{mg}, 78 \%)$ as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.04-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$, $1.46-1.53(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{dd}, J=7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dddt}, J=13.3,7.1,3.6,1.20, \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (dt, $J=15.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{td}, J=10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=12.0$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{tdd}, J=10.2,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{ddt}, J=17.2,1.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.71(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.0,23.3,27.9,29.5,30.2,33.4,34.2,42.3,42.8,43.4,47.0,50.6$, 50.9, 59.0, 61.5, 73.0, 116.3, 137.2, 215.0. GC/MS EI m/z (\%) $306\left(\mathrm{M}^{+}, 1\right), 291$ (7), 275 (36), 247 (2), 193 (11), 153 (52), 135 (22), 121 (20), 105 (33), 93 (71), 79 (65), 67 (40), 55 (68), 41 (100). HRMS Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}\right]^{+}: 306.2194$, Found 306.2195

Swern oxidation of 20

To a stirred solution of oxalyl chloride ($77 \mu \mathrm{~L}, 0.88 \mathrm{mmol}$) in anhydrous dichloromethane (10 mL) under an argon atmosphere at $-78^{\circ} \mathrm{C}$ was added dimethylsulfoxide ($78 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) dropwise. After 10 mins a solution of alcohol 20 in dichloromethane (2 mL) was added dropwise. After 1 hour at $-78^{\circ} \mathrm{C}$ excess anhydrous triethylamine ($370 \mu \mathrm{~L}, 2.65 \mathrm{mmol}$) was added and stirring continued at that temperature for a further 15 mins . The solution was warmed to $0^{\circ} \mathrm{C}$ and stirred for 20 mins , then diluted with dichloromethane (30 mL), washed with brine $(10 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation in vacuo gave a residue which was subjected to column chromatography (1:1 ether:pet. spirit) which afforded ketoaldehyde $21(69 \mathrm{mg}, 51 \%)$ as a colourless paste. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.07-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J$ $=15.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=12.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (dd, $J=7.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.11(\mathrm{~m}$, $1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.97(\mathrm{~m}, 2 \mathrm{H}), 5.61(\mathrm{ddt}, J=$ $16.9,10.2,6.7, \mathrm{~Hz}, 1 \mathrm{H}), 9.52(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.6,23.1,27.9$, $29.4,30.3,32.9,34.2,41.5,43.3,44.0,49.2,51.1,59.2,59.2,73.0,117.1,135.5,201.9,211.2$. GC/MS EI m/z (\%) $304\left(\mathrm{M}^{+}, 5\right), 289(5), 275$ (9), 246 (2), 217 (3), 152 (7), 94 (97), 79 (43), 67 (34), 55 (100). HRMS Calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}\right]^{+}: 304.2033$, Found: 304.2030.

Wacker oxidation of ketoaldehyde 21

Ketoaldehyde 21 ($69 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in a mixture of N, N-dimethylformamide and water ($7: 1,1 \mathrm{~mL}$), and to this was added palladium dichloride ($5 \mathrm{mg}, 28 \mu \mathrm{~mol}$) and copper (II) chloride dihydrate ($38 \mathrm{mg}, 0.23 \mathrm{mmol}$). The reaction mixture was then stirred under a balloon of oxygen for 1 hour. Filtration through celite followed by evaporation under high vacuum gave a residue which was subjected to column chromatography (1:1 ethyl acetate:petroleum spirit) affording diketoaldehyde $18(35 \mathrm{mg}, 48 \%)$ as a colourless foam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.01(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=15.1$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, J=18.0$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=15.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=7.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.69(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (dd, $J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 9.44(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.6,23.2,27.9,29.5,29.9,30.2$, $34.3,41.6,43.3,43.6,43.9,44.1,50.2,58.2,59.3,72.9,201.4,207.3,211.7$. GC/MS EI m/z (\%) $320\left(\mathrm{M}^{+}, 0.3\right), 305$ (2), 292 (0.4), 262 (2), 233 (2), 219 (1), 168 (5), 151 (4), 131 (12), 94 (40), 79 (13), 43 (100). HRMS Calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4}\right]^{+}: 320.1982$, Found: 320.1986.

Vibsanin E(1)

A suspension of [(3-methylbut-2-enoyloxy)methyl]triphenylphosphonium chloride ($90 \mathrm{mg}, 0.220$ mmol) in anhydrous tetrahydrofuran (3 mL) under an argon atmosphere was sonicated for 10 minutes until a uniform milky dispersion had formed. The mixture was then cooled to $-78^{\circ} \mathrm{C}$ and a solution of sodium bis(trimethylsilyl)amide solution ($220 \mu \mathrm{~L}, 0.220 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) was added strictly dropwise. The brightly orange coloured reaction mixture was stirred for 10 minutes then a solution of diketoaldehyde $\mathbf{1 8}(35 \mathrm{mg}, 0.110 \mathrm{mmol})$ in anhydrous tetrahydrofuran (2 mL) was added dropwise and after complete addition the solution turned colourless. The reaction was stirred for 2 minutes then the mixture was poured onto saturated ice-cold sodium bicarbonate (5 $\mathrm{mL})$ and extracted with diethyl ether $(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate: Pet. Spirit / 1:5) on silica gel to give a colourless oil. Crystallisation from diethyl ether/benzene/pet. spirit gave 1 as colourless crystals ($18 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.67(\mathrm{ddd}, J=12.6,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{ddd}, J=14.2,14.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}$, $3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{dd}, J=14.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.29(\mathrm{~m}$, $2 \mathrm{H}), 1.38(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{dd}, J=11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.02(\mathrm{~m}, 1 \mathrm{H})$, $2.06(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=17.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=7.6,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=17.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{ddd}, J=11.1,11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=$ $11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=11.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.70(\mathrm{~m}, 1 \mathrm{H})$, $7.25(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 19.1,20.2,23.3,27.0,28.3,29.5,29.8$, $31.9,34.9,41.2,42.4,43.4,46.0,46.1,47.7,50.0,59.2,72.5,115.1,116.3,135.1,159.8,163.2$, 207.0, 212.9. HRESIMS Calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NaO}_{5}\right]^{+}: 439.2455$, Found: 439.2448.

Synthetic

Vibsanin E (1)

Natural

Natural Vibsanin E ${ }^{2}$		 Vibsan		nin E
Position	$\delta \mathrm{H}$	$\delta \mathrm{C}$	$\delta \mathrm{H}$	$\delta \mathrm{C}$
1	1.10 (dd, 14.8, 5.5)	41.3	1.10 (dd, 14.6, 5.5)	41.2
	2.00 (br d, 14.8)		2.00-2.02 (m)	
2	2.13 (m)	29.8	2.10-2.14 (m)	29.8
3	2.26 (dd, 7.7, 3.3)	50.1	2.26 (dd, 7.6, 3.2)	50.0
4		212.9		212.9
5	3.06 (ddd, 11.5, 10.7, 3.0)	47.7	3.05 (ddd, 11.1, 11.1, 3.2)	47.7
6	2.13 (dd, 17.6, 3.0)	46.1	$\begin{aligned} & 2.13(\mathrm{dd}, 17.7,2.9) \\ & 2.97(\mathrm{dd}, 17.8,10.8) \end{aligned}$	46.1
	2.98 (dd, 17.6, 10.7)			
7		206.9		207.0
8	7.25 (d, 12.4)	135.1	7.25 (d, 12.3)	135.1
9	5.09 (dd, 12.4, 11.8)	116.3	5.09 (dd, 11.8 11.8)	116.3
10	1.72 (dd, 11.8, 11.5)	46.0	1.71 (dd, 11.7 11.7)	46.0
11		34.9		34.9
12	$0.76 \text { (ddd, 14.1, 14.1, 3.3) }$	42.4	$0.76 \text { (ddd, 14.2, 14.2, 3.3) }$	42.4
13	$\begin{aligned} & 1.25(\mathrm{~m}) \\ & 1.16(\mathrm{~m}), 1.25(\mathrm{~m}) \end{aligned}$		$\begin{aligned} & 1.22-1.29(\mathrm{~m}) \\ & 1.14-1.18(\mathrm{~m}), 1.22-1.29(\mathrm{~m}) \end{aligned}$	
14	0.67 (ddd, 12.6, 4.4, 4.1)	43.4	0.67 (ddd, 12.6, 4.0, 4.0)	43.4
15		72.5		72.5
16	1.11 (s)	23.3	1.11 (s)	23.3
17	1.04 (s)	28.3	1.04 (s)	28.3
18	3.32 (dd, 11.8, 3.3)	59.2	3.32 (dd, 11.9, 3.4)	59.2
	4.48 (d, 11.8)		4.47 (d, 11.9)	
19	1.62 (s)	29.5	1.62 (s)	29.5
20	0.79 (s)	31.9	0.79 (s)	31.9
1 '		163.2		163.2
2 '	5.69 (qq, 1.1, 1.1)	115.1	5.68-5.70 (m)	115.1
3 '		159.8		159.8
4	1.37 (d, 1.1)	20.3	1.38 (d, 1.4)	20.2
5 ,	2.06 (d, 1.1)	27.3	2.06 (d, 1.1)	27.0

[^0]
[^0]: ${ }^{1}$ Danheiser R. L.; Romines, K. R; Koyama, H.; Gee, S. K.; Johnson, C. R.; Medich, J. R. Org. Synth. 1993, 71, 133.
 ${ }^{2}$ Fukuyama, Y.; Minami, H.; Kagawa, M.; Kodama, M.; Kawazu, K. J. Nat. Prod. 1999, 62, 337-339.

