Estimating relative disulfide energies: an accurate ab initio PES

Naomi L. Haworth,^A Jason Y. Liu,^A Samuel W. Fan,^A,B
Jill E. Gready,^C Merridee A. Wouters^A,B,D

^AStructural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, NSW, Australia.

^BSchool of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia.

^CJohn Curtin School of Medical Research, Canberra City, ACT, Australia.

^DCorresponding author. Email: m.wouters@victorchang.edu.au
Appendix 1: Contour plots of slices through the M05-2X/6-31G(d) 3D-PES for diethyl disulfide. χ_3 values are: (a) 60°, (b) 70°, (c) 80°, (d) 90°, (e) 100°, (f) 110°, (g) 120°. The horizontal and vertical axes show χ_2 and χ_2'. Due to the symmetry of the system, any specific labelling would be arbitrary. Energies, in kJ mol$^{-1}$, are relative to the absolute minimum.
Appendix 2: Contour plots of slices through the M06-2X/6-31G(d) 3D-PES for diethyl disulfide. \(\chi_3 \) values are: (a) 70º, (b) 80º, (c) 90º, (d) 100º. The horizontal and vertical axes show \(\chi_2 \) and \(\chi_2' \). Due to the symmetry of the system, any specific labelling would be arbitrary. Energies, in kJ mol\(^{-1} \), are relative to the absolute minimum.