10.1071/CH09491_AC, CSIRO 2010 Australian Journal of Chemistry, 2010, 63(8), 1283-1289

Supplementary Materials

Designing of disubstituted derivatives of mer-Alq3: Quantum theoretical study

Ahmad Irfan,^A Ruihai Cui, ^B Jingping Zhang,^A* Muhammad Nadeem^C

^AFaculty of Chemistry, Northeast Normal University, Changchun 130024, China ^BDepartment of Chemistry, Harbin University, Harbin 150080, China

^cFormerly at Department of Chemistry, University of Agriculture, Faisalabad-38040,

Punjab, Pakistan; Currently at Subsurface Technology, Petronas Research Sdn Bhd.

(PRSB), Bangi-43300, Selangor, Malaysia

Fig. S1. Frontier molecular orbitals (FMOs) (0.05 e au⁻³) for the ground states (S_0) of disubstituted derivatives of *mer*-Alq3.

Fig. S2. Frontier molecular orbitals (FMOs) (0.05 e au⁻³) for the excited states (S_1) of disubstituted derivatives of *mer*-Alq3.

Theoretical background of bond dissociation energy

The over all bond energy ΔE is divided into two major components [eq. 1]. The preparation energy ΔE_{prep} corresponding to the amount of energy required to deform the separated fragments, from their equilibrium structure to the geometry they acquire in the overall molecule ($\Delta E_{prep, geo}$), and to excite them to their valence electronic configuration ($\Delta E_{prep, el}$). In the second term, the interaction energy ΔE_{int} between the prepared fragments.

$$\Delta E = \Delta E_{\text{prep}} + \Delta E_{\text{int}} = \Delta E_{\text{prep, geo}} + \Delta E_{\text{prep, el}} + \Delta E_{\text{int}}$$
(1)

The interaction energy ΔE_{int} is further decomposed into three physically meaningful terms.

$$\Delta E_{\rm int} = \Delta E_{\rm elst} + \Delta E_{\rm pauli} + \Delta E_{\rm oi} \tag{2}$$

The term ΔE_{elst} is associated with the electrostatic interaction between the unperturbed charge distributions of the prepared fragments as they are brought together at their final positions, yielding the overall density that is simply a superposition of fragment densities $\rho_A + \rho_B$. The repulsive term ΔE_{pauli} is caused by going from the product of fragment wave functions ψ_A and ψ_B to $\psi^0 = \text{NA}[\psi_A\psi_B]$ that properly obeys the Pauli principle (A antisymmetrization operator, N - renormalization constant). The orbital interaction energy ΔE_{oi} is the energy change due to the relaxation of the wave function to its final form through electron pair bonding, charge transfer and polarization. The orbital term ΔE_{oi} can

be considered as an estimate of the covalent contributions to the attractive interactions.

Thus, the ratio $\Delta E_{elst}/\Delta E_{oi}$ indicates the electrostatic/covalent character of the bond.

Table S1

Selected optimized bond angles (degree) for *mer*-Alq3 and its disubstituted derivatives at the B3LYP/6-31G* Level

Complexes	N _A -Al-N _C	N _B -Al-O _A	O _C -Al-O _B
Alq3	171.53	172.57	166.56
1	170.59	171.98	166.00
2	170.41	172.12	167.00
3	171.14	172.31	166.07
4	170.48	172.03	165.51
5	170.60	172.42	165.48
6	170.98	172.33	166.01
Exp ^A	173.82	171.46	168.22

^AExperimental data of *mer*-Alq3 from ref. S36

Optical properties

As for the electronic excited states, the focus was mainly on the properties of the $S_1 \rightarrow S_0$ transition, as Alq₃ is the so-called singlet emitter. The reviewer draws our attention toward this issue thus we have calculated the triplet emissions of Alq3 and its derivatives. We observed that the oscillator strength in triplet emission is zero in parent molecule as well as studied systems. We presented this data in supporting information and explained in our revised manuscript. If we neglect the oscillator strength, we have observed interesting feature that triplet state energies are lower than the singlet state ones. By considering singlet emitter energies of the maximum oscillator strength in *mer*-Alq3,1, 2, 3, 4, 5, and 6 are 2.4506 eV, 2.4572 eV, 2.6791 eV, 2.3360 eV, 2.2998 eV, 1.7749 eV, 2.4963 eV which are higher than the triplet for the same excited states, i.e., 1.8278 eV, 1.8801 eV, 2.0631 eV, 1.9202 eV, 1.7437 eV, 1.2860 eV, 2.0127 eV, respectively. Our computed triplet emission for Alq3 is 678 nm which is in good agreement with Burrow et al. whom observed broad band emission at 660 nm and assigned to Alq3 phosphorescence.

Alq3-triplet

Excited State 1: Triplet-A 0.8020 eV 1545.91 nm f=0.0000 119 ->120 0.70716

Excited State 2: 106 ->120 117 ->120 117 ->125	Triplet-A -0.11428 0.76483 -0.12180	1.7085 eV 725.70 nm f=0.0000
Excited State 3: 119 ->121 119 ->123 119 ->129	Triplet-A -0.19536 0.74167 -0.12804	1.7328 eV 715.50 nm f=0.0000
Excited State 4: 119 ->121 119 ->123	Triplet-A 0.67295 0.20814	1.8278 eV 678.31 nm f=0.0000
Excited State 5: 118 ->120 118 ->121	Triplet-A 0.67384 -0.21898	1.9662 eV 630.58 nm f=0.0000
Excited State 1: 119 ->120	Singlet-A 0.70688	0.8034 eV 1543.28 nm f=0.0001
Excited State 2: 119 ->121	Singlet-A 0.70661	1.8345 eV 675.86 nm f=0.002
Excited State 3: 118 ->120	Singlet-A 0.70644	1.9953 eV 621.39 nm f=0.001
Excited State 4: 117 ->120 119 ->123	Singlet-A 0.56670 -0.41410	2.4506 eV 505.94 nm f=0.039
Excited State 5: 117 ->120 119 ->123	Singlet-A 0.40625 0.56361	2.4828 eV 499.37 nm f=0.030

-		
	trin	Δt
	U I D	ιcι
	· •	

Excited State	1:	Triplet-A	0.9215 eV	/ 1345.41 nm	f=0.0000
155 ->156		0.70675			
Excited State	2:	Triplet-A	1.7203 e'	V 720.71 m	n f=0.0000
153 ->156		0.68758			
Excited State	3:	Triplet-A	1.7339 e'	V 715.06 m	n f=0.0000
155 ->157		-0.16836			
155 ->159		0.67203			
Excited State	4:	Triplet-A	1.8801 e	V 659.46 m	n f=0.0000
154 ->157		0.12249			
155 ->157		0.67056			
155 ->159		0.16467			
Excited State	5:	Triplet-A	1.9986 e	V 620.37 m	n f=0.0000
154 ->156		0.64475			
154 ->157		-0.25229			
155 ->157		0.11605			
1-singlet					
Excited State	1:	Singlet-A	0.9235 eV 13	42.61 nm f⁼	=0.0003
155 ->156		0.70649			
Excited State	2:	Singlet-A	1.8896 eV	656.14 nm	f=0.0048
155 ->157		0.70543			
Excited State	3:	Singlet-A	2.0373 eV	608.59 nm	f=0.0024
154 ->156		0.70533			
Excited State	4:	Singlet-A	2.4572 eV	504.58 nm	f=0.0461
153 ->156		0.52039			
155 ->158		-0.25629			
155 ->159		-0.33352			

Excited State 5:	Singlet-A	2.4740 eV 501.15 nm f=0.0176
153 ->156	0.22200	
155 ->158	0.65727	
2-triplet		
Excited State 1:	Triplet-A	1.1442 eV 1083.55 nm f=0.0000
149 ->150	0.70668	
	Trivlat A	1 9 2 27 - M (70 97 C 0 0000
Excited State 2:	Inplet-A	1.823/ ev 6/9.8/ nm i=0.0000
147 ->150	0.68732	
Excited State 3:	Triplet-A	1.9231 eV 644.72 nm f=0.0000
149 ->151	-0.17869	
149 ->153	0.66585	
Excited State 4:	Triplet-A	2.0631 eV 600.97 nm f=0.0000
148 ->150	-0.12858	
148 ->151	0.21225	
149 ->151	0.63592	
149 ->153	0.16931	
Excited State 5:	Triplet-A	2.1488 eV 576.99 nm f=0.0000
148 ->150	0.55639	
148 ->151	-0.35481	
149 ->151	0.22753	
a : 1/		
		1 1461 14 1001 75 6 0 0002
Excited State 1:	Singlet-A	1.1461 eV 1081./5 nm 1=0.0003
149 ->150	0.70656	
Excited State 2:	Singlet-A	2.0770 eV 596.94 nm f=0.0047
149 ->151	0.70561	
Excited State 3:	Singlet-A	2.2027 eV 562.86 nm f=0.0022

148 ->150		0.70544			
Excited State 147 ->150 149 ->152 149 ->153	4:	Singlet-A 0.59048 0.10319 -0.26653	2.6791 eV	462.79 nm	f=0.0868
Excited State 147 ->150 149 ->152 149 ->153	5:	Singlet-A -0.21331 0.58854 -0.28352	2.7232 eV	455.28 nm	f=0.0252
3-triplet					
Excited State	1:	Triplet-A	0.7482 eV 1	657.12 nm	f=0.0000
143 ->144		0.70724			
Excited State 143 ->145 143 ->147 143 ->153	2:	Triplet-A -0.19727 0.74580 -0.13546	1.6174 eV	766.58 nm	f=0.0000
Excited State 131 ->144 141 ->144 141 ->150	3:	Triplet-A -0.10031 0.76766 -0.12840	1.6755 eV	739.98 nm	f=0.0000
Excited State 143 ->145 143 ->147	4:	Triplet-A 0.67490 0.21012	1.7277 eV	717.63 nm	f=0.0000
Excited State 142 ->144 142 ->145	5:	Triplet-A 0.67077 -0.23921	1.9202 eV	645.67 nm	f=0.0000

3-singlet

Excited State 1:	Singlet-A	0.7500 eV 1653.19 nm f=0.0002
Excited State 2:	Singlet_A	1.7333 eV 715.31 nm f=0.0037
143 ->145	0 70658	1.7555 CV 715.51 IIII 1-0.0057
175 175	0.70050	
Excited State 3:	Singlet-A	1.9531 eV 634.81 nm f=0.0020
142 ->144	0.70638	
Excited State 4:	Singlet-A	2.2919 eV 540.97 nm f=0.0009
143 ->146	0.70516	
Excited State 5:	Singlet-A	2.3360 eV 530.74 nm f=0.0458
141 ->144	-0.21864	
143 ->147	0.66660	
4-triplet		
Excited State 1:	Triplet-A	0.7819 eV 1585.71 nm f=0.0000
155 ->156	0.70682	
Excited State 2:	Triplet-A	1.6040 eV 772.95 nm f=0.0000
153 ->156	0.33195	
155 ->157	0.12548	
155 ->159	0.59814	
Excited State 3:	Triplet-A	1.6057 eV 772.15 nm f=0.0000
<s**2>=2.000</s**2>		
153 ->156	0.60621	
155 ->159	-0.32593	
Excited State 4:	Triplet-A	1.7437 eV 711.04 nm f=0.0000
154 ->157	-0.11317	
155 ->157	0.67860	
155 ->159	-0.14323	
Excited State 5:	Triplat A	1.8720 eV 662.20 nm f-0.0000
LACHEU State J.	Tipict-A	1.072000 002.271111 1-0.0000

154 ->156	0.65718	
154 ->157	0.22829	
155 ->157	0.10023	
4-singlet		
Excited State 1:	Singlet-A	0.7836 eV 1582.33 nm f=0.0002
155 ->156	0.70654	
Excited State 2:	Singlet-A	1.7545 eV 706.65 nm f=0.0040
155 ->157	0.70545	
Excited State 3:	Singlet-A	1.9057 eV 650.60 nm f=0.0021
154 ->156	0.70536	
Excited State 4:	Singlet-A	2.2998 eV 539.11 nm f=0.0490
153 ->156	-0.38684	
155 ->159	0.53747	
Excited State 5:	Singlet-A	2.3324 eV 531.58 nm f=0.0386
153 ->156	0.53481	
155 ->159	0.37945	
5-triplet		
Excited State 1:	Triplet-A	0.3346 eV 3705.20 nm f=0.0000
149 ->150	0.70745	
Excited State 2:	Triplet-A	1.2143 eV 1021.03 nm f=0.0000
149 ->151	-0.22453	
149 ->152	0.74533	
149 ->161	-0.12192	
Excited State 3:	Triplet-A	1.2258 eV 1011.44 nm f=0.0000
136 ->150	-0.11152	
147 ->150	0.78008	
Excited State 4:	Triplet-A	1.2860 eV 964.12 nm f=0.0000

149 ->151	0.66676	
149 ->152	0.24438	
Excited State 5:	Triplet-A	1.4257 eV 869.64 nm f=0.0000
148 ->150	0.68826	
148 ->151	-0.16351	
5-singlet		
Excited State 1:	Singlet-A	0.3357 eV 3692.85 nm f=0.0000
149 ->150	0.70686	
Excited State 2:	Singlet-A	1.2922 eV 959.48 nm f=0.0040
149 ->151	0.70648	
Excited State 3:	Singlet-A	1.4454 eV 857.77 nm f=0.0016
148 ->150	0.70628	
Excited State 4:	Singlet-A	1.7749 eV 698.55 nm f=0.0361
147 ->150	-0.41597	
149 ->152	0.56958	
Excited State 5:	Singlet-A	1.8016 eV 688.20 nm f=0.0317
147 ->150	0.56837	
149 ->152	0.41539	
6 tuinlot		
U-III piet	Trivelat A	0 8805 aV 1408 12 mm 6-0 0000
	0 70717	0.8803 eV 1408.13 http://doi.org/10.0000
143 ->144	0.70717	
Excited State 2:	Triplet-A	1.7412 eV 712.07 nm f=0.0000
141 ->144	0.76914	
141 ->150	-0.12416	
Excited State 3:	Triplet-A	1.7741 eV 698.87 nm f=0.0000
143 ->145	-0.15109	
143 ->147	0 74512	
1.1.2 • 1.17	0.7 1014	

143 ->148		0.10245			
143 ->149		-0.11611			
143 ->154		-0.13578			
Excited State	4:	Triplet-A	1.9023 eV	651.76 nm	f=0.0000
142 ->145		0.12537			
143 ->145		0.67863			
143 ->147		0.15634			
Excited State	5:	Triplet-A	2.0127 eV	616.01 nm	f=0.0000
142 ->144		0.66698			
142 ->145		-0.23231			
143 ->145		0.10140			
6-singlet					
8					
Excited State	1:	Singlet-A	0.8821 eV 14	405.56 nm	f=0.0002
Excited State 143 ->144	1:	Singlet-A 0.70660	0.8821 eV 14	405.56 nm d	f=0.0002
Excited State 143 ->144	1:	Singlet-A 0.70660	0.8821 eV 14	405.56 nm 1	f=0.0002
Excited State 143 ->144 Excited State	1: 2:	Singlet-A 0.70660 Singlet-A	0.8821 eV 14 1.9122 eV	405.56 nm 1 648.38 nm	f=0.0002 f=0.0030
Excited State 143 ->144 Excited State 143 ->145	1: 2:	Singlet-A 0.70660 Singlet-A 0.70566	0.8821 eV 14 1.9122 eV	405.56 nm 1 648.38 nm	f=0.0002 f=0.0030
Excited State 143 ->144 Excited State 143 ->145 Excited State	1: 2: 3.	Singlet-A 0.70660 Singlet-A 0.70566	0.8821 eV 14 1.9122 eV 2.0435 eV	405.56 nm 1 648.38 nm	f=0.0002 f=0.0030
Excited State 143 ->144 Excited State 143 ->145 Excited State	1: 2: 3:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A	0.8821 eV 14 1.9122 eV 2.0435 eV	405.56 nm f 648.38 nm 606.72 nm	f=0.0002 f=0.0030 f=0.0019
Excited State 143 ->144 Excited State 143 ->145 Excited State 142 ->144	1: 2: 3:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A 0.70541	0.8821 eV 14 1.9122 eV 2.0435 eV	405.56 nm 1 648.38 nm 606.72 nm	f=0.0002 f=0.0030 f=0.0019
Excited State 143 ->144 Excited State 143 ->145 Excited State 142 ->144 Excited State	1: 2: 3: 4:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A 0.70541 Singlet-A	0.8821 eV 14 1.9122 eV 2.0435 eV 2.3074 eV	405.56 nm 4 648.38 nm 606.72 nm 537.34 nm	f=0.0002 f=0.0030 f=0.0019 f=0.0018
Excited State 143 ->144 Excited State 143 ->145 Excited State 142 ->144 Excited State 143 ->146	1: 2: 3: 4:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A 0.70541 Singlet-A 0.70628	0.8821 eV 14 1.9122 eV 2.0435 eV 2.3074 eV	405.56 nm 4 648.38 nm 606.72 nm 537.34 nm	f=0.0002 f=0.0030 f=0.0019 f=0.0018
Excited State 143 ->144 Excited State 143 ->145 Excited State 142 ->144 Excited State 143 ->146	1: 2: 3: 4:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A 0.70541 Singlet-A 0.70628	0.8821 eV 14 1.9122 eV 2.0435 eV 2.3074 eV	405.56 nm 4 648.38 nm 606.72 nm 537.34 nm	f=0.0002 f=0.0030 f=0.0019 f=0.0018
Excited State 143 ->144 Excited State 143 ->145 Excited State 142 ->144 Excited State 143 ->146 Excited State	1: 2: 3: 4: 5:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A 0.70541 Singlet-A 0.70628	0.8821 eV 14 1.9122 eV 2.0435 eV 2.3074 eV 2.4963 eV	405.56 nm 4 648.38 nm 606.72 nm 537.34 nm 496.68 nm	f=0.0002 f=0.0030 f=0.0019 f=0.0018 f=0.0508
Excited State 143 ->144 Excited State 143 ->145 Excited State 142 ->144 Excited State 143 ->146 Excited State 143 ->146	1: 2: 3: 4: 5:	Singlet-A 0.70660 Singlet-A 0.70566 Singlet-A 0.70541 Singlet-A 0.70628 Singlet-A 0.70628	0.8821 eV 14 1.9122 eV 2.0435 eV 2.3074 eV 2.4963 eV	405.56 nm 4 648.38 nm 606.72 nm 537.34 nm 496.68 nm	f=0.0002 f=0.0030 f=0.0019 f=0.0018 f=0.0508

Absorption and emission of mer-Alq3 at TD-PBE0/6-311+G* level

We have the experimental absorption and emission values of the mer-Alq3, to check

the basis set effect, we have used 6-31G* and 6-311+G* basis sets, see Table S2.

Table S2

Calculated absorption and emission wavelengths (nm) for mer-Alq3 in S₀ (λ_a) and S₁ (λ_e)^a

Complex	λ_a	Exp ^b	λ_e	Exp ^b
mer-Alq3	410 (419)	387	523 (536)	515

^a The λ_a have been calculated at the TD-PBE0/6-31G*//B3LYP/6-31G* and the values in parenthesis are at TD-PBE0/6-311+G*//B3LYP/6-31G*, the λ_e have been calculated at the TD-PBE0/6-31G*//CIS/6-31G* and the values in parenthesis are at TD-PBE0/6-311+G*//CIS/6-31G* level of theories.

^b Experimental data from reference ref. S38

mer-Alq3 absorption

Excited State	Singlet-A	2.9574 eV	419.23 nm	f=0.0621
117 ->120	-0.21298			
118 ->120	0.13014			
118 ->122	0.11350			
119 ->121	0.42951			
119 ->122	0.42519			

mer-Alq3 emission

Excited State	Singlet-A	2.3122 eV	536.21 nm	f=0.0398
119 ->120	0.63358			
119 ->121	-0.15585			

The excitations attributed from H \rightarrow L+1 at the ground states. From the data given in above Tables, we have found that basis set has no significant effect for the *mer*-Alq3 and its derivatives.

Table S3

Calculated absorption and emission wavelengths (nm) of disubstituted derivatives in S_0 (λ_a) at the TD-PBE0/6-31G* and TD-PBE0/6-31+G* level^a

Complexes	f	Absorption
1	0.1203	416 (423)
2	0.1714	393 (397)
3	0.0877	426 (429)
4	0.0983	439 (447)

^a The λ_a have been calculated at the TD-PBE0/6-31G*//B3LYP/6-31G* and the values in parenthesis are at TD-PBE0/6-31+G*//B3LYP/6-31G*

Excitations contribution for absorption at TD-PBE0/6-31+G* level

1. Excited State	Singlet-A	2.9325 e	eV 422.79 n	m f=0.1089
153 ->156	-0.25201			
154 ->156	-0.16482			
154 ->158	0.10675			
155 ->157	0.44460			
155 ->158	-0.37739			
2. Excited State	Singlet-A	3.1221 eV	397.11 nm	f=0.1706
147 ->150	-0.22737			
148 ->150	-0.26714			
149 - >151	0.45668			
149 ->152	0.31582			
3. Excited State	Singlet-A	2.8889 eV	429.17 nm	f=0.0793
141 ->144	-0.22921			
142 ->144	0.12569			
142 ->146	0.10872			
143 ->144	0.11458			

143 ->14	5 0.44148			
143 ->14	6 0.40291			
4. Excited State	e Singlet-A	2.7756 eV	446.70 nm	f=0.0897
153 ->15	6 -0.19743			
154 ->15	6 0.13704			
154 ->15	8 0.11603			
155 ->15	7 0.43297			
155 ->15	8 0.43154			

Electrostatic surface potential

Fig. S3. Electrostatic surface potentials for disubstituted derivatives. Regions of higher electron density are shown in red and of lower electron density in blue (values in atomic units)

References

S[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. malick, A. D. Rabuck, K. raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowki, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03*, revision B.03, Gaussian, Inc.: Wallingford, CT, 2004.

S[36] M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, J. Am. Chem. Soc. 122 (2000) 5147.

S[38] Y.W. Shi, M.M. Shi, J.C. Huang, H.Z. Chen, M. Wang, X.D. Liu, Y.G. Ma, H. Xu and B. Yang, Chem. Comm. 2006, 1941.