Synthesis and Biological Evaluation of a New Family of Constrained

Azabicyclic Homocholine Analogues

Jill I. Halliday, ${ }^{\mathrm{A}}$ Mary Chebib, ${ }^{\mathrm{B}}$ and Malcolm D. McLeod ${ }^{\mathrm{C}, \mathrm{D}}$
${ }^{\text {A }}$ School of Chemistry, F11, University of Sydney, NSW 2006, Australia.
${ }^{\mathrm{B}}$ Faculty of Pharmacy, A15, University of Sydney, NSW 2006, Australia.
${ }^{C}$ Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
${ }^{\text {D }}$ Corresponding author. Email: malcolm.mcleod@anu.edu.au

Contents

General Experimental S2
Synthetic Procedures and Characterisation Data S3-S18
Inhibitory Concentration $\left(\mathrm{IC}_{50}\right)$ Response Curves S19-S20
References S21
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra \quad S22-S83

General Experimental

Infrared absorption spectra were obtained using a Shimadzu FTIR-84005 (Fourier Transform Infrared Spectrometer). Compounds were prepared as a thin film between 0.5 cm sodium chloride plates seated on a custom made perch in the apparatus. Absorption maxima ($v_{\max }$) are expressed in wavenumbers $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ Nuclear magnetic resonance spectra were recorded using a Bruker Avance 200 (200.13 MHz), Bruker Avance 300 (300.13 MHz), Bruker DRX 400 (400.21 MHz) spectrometer or a Varian Gemini 300 and Varian Mercury 300 (300.06 MHz), and are recorded in parts per million (ppm) downfield shift from tetramethylsilane ($\delta_{\text {TMS }}=0$), using residual chloroform solvent (δ 7.26) as internal reference. The data is reported as chemical shift $\left(\delta_{H}\right)$, relative integral, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{br}=$ broad, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sext. $=$ sextet, sept. $=$ septet, $\mathrm{m}=$ multiplet $)$, coupling constant $(J \mathrm{~Hz})$ and assignment. ${ }^{13} \mathrm{C}$ Nuclear magnetic resonance spectra were recorded using a Bruker Avance $300(75.5 \mathrm{MHz})$, Bruker DRX 400 (100.6 MHz) or a Varian Gemini 300 and Varian Mercury $300(75.5 \mathrm{MHz})$ spectrometer at ambient temperature with complete proton decoupling. Data is expressed in parts per million (ppm) downfield relative to tetramethylsilane ($\delta_{\mathrm{TMS}}=0$) using deuterated chloroform ($\delta 77.1$) as an internal reference and is reported as chemical shift $\left(\delta_{\mathrm{C}}\right)$. Low resolution mass spectra were recorded using positive ion electrospray ionization (ESI+) on a Finnigan PolarisQ ion trap or Micromass-Waters LC-ZMD single quadrupole liquid chromatograph-mass spectrometer or by electron ionisation (EI) on a VG AutoSpec M series sector mass spectrometer. Major fragments are quoted in the form x (y), where x is the mass to charge ratio $(\mathrm{m} / \mathrm{z})$ and y is the percentage abundance relative to the base peak. High resolution mass spectra were recorded using positive ion electrospray ionization (ESI+) on Bruker Apex 4.7T FTICR-MS or by electron ionisation (EI) on a VG AutoSpec M series sector mass spectrometer. Analytical thin layer chromatography (TLC) was performed using 0.2 mm thick aluminium-backed, pre-coated silica gel plates (Merck Kieselgel 60 F254). Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh ASTM), under a positive pressure of nitrogen. Solvent compositions were mixed v / v as specified.

8-Benzyl-8-azabicyclo[4.3.1]decan-10-one 6e

To a solution of N, N-bis(ethoxymethyl)benzylamine ${ }^{[1,2]} 5\left(\mathrm{R}^{1}=\mathrm{Bn}\right)(2.68 \mathrm{~g}, 12.0 \mathrm{mmol})$ and chlorotrimethylsilane ($2.57 \mathrm{~g}, 23.7 \mathrm{mmol}$) in acetonitrile (80 mL) was added cycloheptanone $(0.897 \mathrm{~g}, 8.00 \mathrm{mmol})$ and the mixture was stirred at room temperature for 48 h . The reaction was quenched by the addition of ice water $(20 \mathrm{~mL})$ and partitioned between diethyl ether (40 mL) and water (30 mL). The organic layer was then extracted with hydrochloric acid ($0.5 \mathrm{M}, 4 \times 8 \mathrm{~mL}$) and the combined aqueous extracts washed with diethyl ether (40 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and the pH brought to 9 by the addition of concentrated ammonia solution ($\sim 4 \mathrm{~mL}$). The organic material was then extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with brine $(2 \times 20 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure to afford the title compound $\mathbf{6 e}(0.647 \mathrm{~g}, 2.66 \mathrm{mmol}, 33 \%)$ as a yellow oil. $v_{\max }$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2916,2851,2802,2766(\mathrm{C}-\mathrm{H}), 1713(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.36-$ $7.26\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 2.85(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$, H6), 2.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}$), 2.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}$), 1.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}$), 1.59 ($2 \mathrm{H}, \mathrm{m}$, H2B, H5B), $1.42(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 212.5,138.2,128.6,127.9$, 126.8, 62.4, 59.3, 48.3, 31.0, 26.5; m/z (ESI+) $244\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI+) found 244.1697; $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 244.1701.

General Procedure for Sodium Borohydride Reduction

Sodium borohydride (2 eq) was added to a stirred solution of ketone (1 eq) in ethanol/water (4:1) at $0^{\circ} \mathrm{C}$, and the reaction stirred for 2 h . Concentrated hydrochloric acid was added dropwise to quench the excess sodium borohydride and the mixture concentrated under reduced pressure to remove ethanol. The aqueous solution was made basic (pH 10) by the addition of aqueous sodium hydroxide (3 M) and the organic material extracted by diethyl ether $(3 \times$). The combined organic extracts were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to give the crude alcohol. Purification by flash chromatography (ethyl acetate:hexane) then afforded the target compound.

The reaction was conducted according to the general procedure using 8-ethyl-8-azabicyclo[4.3.1]decan-10-one ${ }^{[3]} \mathbf{6 a}(1.06 \mathrm{~g}, 5.85 \mathrm{mmol})$, sodium borohydride ($0.441 \mathrm{~g}, 11.7 \mathrm{mmol}$) and ethanol/water (125 mL) to afford the title compound $7 \mathrm{a}(0.867 \mathrm{~g}, 4.73 \mathrm{mmol}, 81 \%)$ as a colourless solid after flash chromatography (1:4, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3393$ (O-H), 2967, 2904, $2755(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.88$ ($1 \mathrm{H}, \mathrm{t}, J 5.4, \mathrm{H} 10$), 2.71 (2H, d, J 10.9, H7A, H9A), 2.25 ($2 \mathrm{H}, \mathrm{q}, ~ J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 2.07-1.86 ($8 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}$, H5A, H6, H7B, H9B), 1.68 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}$), $1.53(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 1.04(3 \mathrm{H}, \mathrm{t}, J 7.2$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 76.2,60.4,52.4,38.8,31.7,27.4,13.0 ; m / z(\mathrm{ESI}+) 184$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 184.1701, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 184.1693.
(10s)-8-Isopropyl-8-azabicyclo[4.3.1]decan-10-ol 7b

The reaction was conducted according to the general procedure using 8-isopropyl-8-azabicyclo[4.3.1]decan-10-one ${ }^{[3]} \mathbf{6 b}(1.01 \mathrm{~g}, 5.17 \mathrm{mmol})$, sodium borohydride ($0.391 \mathrm{~g}, 10.3 \mathrm{mmol}$) and ethanol/water (100 mL) to afford the title compound $7 \mathrm{~b} ~(1.00 \mathrm{~g}, 5.07 \mathrm{mmol}, 98 \%)$ as a colourless solid after flash chromatography (1:4, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3261$ (O-H), 2961, 2939, 2914, 2870, $2852(\mathrm{C}-\mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.83(1 \mathrm{H}, \mathrm{t}, J 5.4$, H10), 2.69 (1H, sept. $\left.J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.63$ (2H, dd, $J 11.1,2.2$, H7A, H9A), 2.31 (2H, dd, J 11.3, 2.8, H7B, H9B), 2.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6$), 1.97-1.85 (4H, m, H2A, H3A, H4A, H5A), 1.68 (2 H , m, H2B, H5B), $1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 0.98\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 76.8,56.4,55.4,39.8,32.7,28.1,18.3 ; m / z(\mathrm{ESI}+) 198\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 198.1858, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 198.1852 .
(10s)-8-tert-Butyl-8-azabicyclo[4.3.1]decan-10-ol 7c ${ }^{[3]}$

The reaction was conducted according to the general procedure using 8-tert-butyl-8-azabicyclo[4.3.1]decan-10-one ${ }^{[3]} \mathbf{6 c}(1.00 \mathrm{~g}, 4.78 \mathrm{mmol})$, sodium borohydride ($0.724 \mathrm{~g}, 19.2 \mathrm{mmol}$) and methanol/water $(50 \mathrm{~mL})$ to afford the title compound $7 \mathrm{c}(0.613 \mathrm{~g}, 2.90 \mathrm{mmol}, 61 \%)$ as a colourless solid after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3273$ (O-H), 2961, 2910, 2851, 2795, 2739 (C-H); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.83(1 \mathrm{H}, \mathrm{t}, J 5.5$, H10), 2.88 (2H, dd J 8.6, 2.4, H7A, H9A), 2.19 (2H, dd, $J 11.3,2.6, ~ H 7 B, ~ H 9 B), ~ 2.06 ~(2 H, ~ m, ~ H 1, ~$ H6), 1.99-1.85 (4H, m, H2A, H3A, H4A, H5A), 1.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}$), $1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}$, H4B), $1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 76.9,53.8(2 \mathrm{C}), 39.9,32.6,28.2$, 26.7; $m / z(\mathrm{ESI}+) 212\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 156$ (17). Found 212.2009, $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 212.2009.
(10s)-8-Propyl-8-azabicyclo[4.3.1]decan-10-ol 7d

The reaction was conducted according to the general procedure using 8-propyl-8-azabicyclo[4.3.1]decan-10-one ${ }^{[3]} \mathbf{6 d}(0.225 \mathrm{~g}, 1.15 \mathrm{mmol})$, sodium borohydride ($0.0870 \mathrm{~g}, 2.30$ $\mathrm{mmol})$ and ethanol/water $(15 \mathrm{~mL})$ to afford the title compound $7 \mathrm{~d}(0.192 \mathrm{~g}, 0.973 \mathrm{mmol}, 85 \%)$ as a colourless solid after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3366$ (O-H), 2964, 2935, $2878(\mathrm{C}-\mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.89(1 \mathrm{H}, \mathrm{t}, J 5.4, \mathrm{H} 10), 2.71$ ($2 \mathrm{H}, \mathrm{d} J 10.9, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.17\left(2 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.08(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6), 2.02(2 \mathrm{H}, \mathrm{dd}, J$ $11.5,3.0$, H7B, H9B), 2.06-1.88 (4H, m, H2A, H3A, H4A, H5A), 1.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}$), 1.58$1.45(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 1.49\left(2 \mathrm{H}\right.$, sext., $\left.J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} 76.3,61.8,61.6,39.8,32.6,28.0,21.5,12.5 ; \mathrm{m} / \mathrm{z}$ (ESI+) 198 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 198.1854, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 198.1858.
(10s)-8-Benzyl-8-azabicyclo[4.3.1]decan-10-ol 7e

The reaction was conducted according to the general procedure using ketone $\mathbf{6 e}(0.470 \mathrm{~g}, 1.93$ $\mathrm{mmol})$, sodium borohydride $(0.146 \mathrm{~g}, 3.87 \mathrm{mmol})$ and ethanol/water $(40 \mathrm{~mL})$ to afford the title compound $7 \mathbf{e}$ ($0.455 \mathrm{~g}, 1.85 \mathrm{mmol}, 96 \%$) as a colourless solid after flash chromatography ($1: 9$, ethyl
acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3339(\mathrm{O}-\mathrm{H}), 2945,2907,2870,2853,2806(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($\left.200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 7.31-7.20\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{C}_{6} H_{6}\right), 3.91(1 \mathrm{H}, \mathrm{t}, J 4.9, \mathrm{H} 10), 3.36(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{6}\right), 2.67(2 \mathrm{H}, \mathrm{d}, J 10.6, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.10-1.88(8 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}, \mathrm{H} 6$, H7B, H9B), 1.75 (2H, m, H2B, H5B), $1.49(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}}$ 168.7, 158.2, 157.3, 156.0, 104.3, 92.6, 89.6, 67.9, 60.5, 56.2; m/z (ESI+) 246 ([M+H] ${ }^{+}$, 100). Found 246.1851, $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 246.1858.
(11s)-9-Ethyl-9-azabicyclo[5.3.1]undecan-11-ol 7f

The reaction was conducted according to the general procedure using 9-ethyl-9-azabicyclo[5.3.1]undecan-11-one ${ }^{[3]} \mathbf{6 f}(0.958 \mathrm{~g}, 4.90 \mathrm{mmol})$, sodium borohydride ($0.371 \mathrm{~g}, 9.80$ $\mathrm{mmol})$ and ethanol/water (100 mL) to afford a mixture of epimers ($1: 4.2,11 r: 11 s$) which was separated to give the title compound $7 \mathrm{f}(0.492 \mathrm{~g}, 2.49 \mathrm{mmol}, 51 \%)$ as a colourless oil after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3369(\mathrm{O}-\mathrm{H}), 2966,2933,2908$, 2847, 2799, $2762(\mathrm{C}-\mathrm{H})$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.83(1 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{H} 11), 2.81(2 \mathrm{H}, \mathrm{d}, J$ 11.3, H8A, H10A), $2.31\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.05(2 \mathrm{H}, \mathrm{dd}, J 11.7,3.8, \mathrm{H} 8 \mathrm{~B}, \mathrm{H} 10 \mathrm{~B}), 1.95-$ $1.88(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}, \mathrm{H} 6 \mathrm{~A}, \mathrm{H} 7), 1.72-1.69(5 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~B}, \mathrm{H} 6 \mathrm{~B})$, $1.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{~B}), 1.07\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} 58.2,53.3,38.7$, 33.5, 30.6, 25.6, 12.8, 6.7; m/z (ESI+) $198\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 198.1845, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ requires 198.1858.

A second fraction afforded the ($11 r$) isomer ($31.3 \mathrm{mg}, 0.159 \mathrm{mmol}, 3 \%$) which was not investigated further.
(11s)-9-tert-Butyl-9-azabicyclo[5.3.1]undecan-11-ol 7g

The reaction was conducted according to the general procedure using 9-tert-butyl-9-azabicyclo[5.3.1]undecan-11-one ${ }^{[3]} \mathbf{6 g}(118 \mathrm{mg}, 0.528 \mathrm{mmol})$, sodium borohydride ($39.9 \mathrm{mg}, 1.06$ $\mathrm{mmol})$ and ethanol$/$ water $(10 \mathrm{~mL})$ to afford the title compound $7 \mathbf{g}(106 \mathrm{mg}, 0.472 \mathrm{mmol}, 89 \%)$ as a
colourless solid after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3339$ (O-H), 2964, 2908, $2787(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 11), 2.98(2 \mathrm{H}, \mathrm{d} J$ 11.1, H8A, H10A), 2.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 8 \mathrm{~B}, \mathrm{H} 10 \mathrm{~B}$), 2.01-1.61 (11H, m, H1, H2, H3, H4A, H5, H6, H7), $1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4 \mathrm{~B}), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} 76.1,54.5,51.4,39.0$, 33.4, 31.3, 26.6, 25.6; m/z (ESI+) $226\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 170 (10). Found 226.2164, $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 226.2171.
(9s)-3-Ethyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-ol 10a and (9r)-3-ethyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-ol 11a

The reaction was conducted according to the general procedure using 3-ethyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-one ${ }^{[3]} \mathbf{9 a}(501 \mathrm{mg}, 2.56 \mathrm{mmol})$, sodium borohydride ($194 \mathrm{mg}, 5.13 \mathrm{mmol}$) and ethanol/water (50 mL) to afford the title compounds as a mixture of epimers ($1: 2.2,9 r: 9 s)$ which was separated to give 10a ($306 \mathrm{mg}, 1.55 \mathrm{mmol}, 60 \%$) as a colourless solid after flash chromatography (1:9 ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3342(\mathrm{O}-\mathrm{H}), 2966,2945,2922,2870$, 2800, 2770, $2748(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 3.00(1 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{H} 9), 2.80-2.62(1 \mathrm{H}$, m, H7A), 2.73 (2H, dd, J 10.4, 1.3, H2A, H4A), 2.14 ($2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 1.80 ($2 \mathrm{H}, \mathrm{d}, J 10.4$, H2B, H4B), $1.63-1.52(3 H, m, H 6 A, H 7 B, H 8 A), 1.41(1 H, b s, O H), 1.35(2 H, d d, J 13.8,6.9$, H6B, H8B), $1.01\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{C} 81.4, 66.3, 52.4, 36.2, 31.3, 25.5, 21.1, 13.0; m/z (ESI+) 198 ([M+H] ${ }^{+}, 100$), 196 (32). Found 198.1853, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 198.1858.

A second fraction afforded $\mathbf{1 1 a}(117 \mathrm{mg}, 0.593 \mathrm{mmol}, 23 \%)$ as a colourless oil. $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1}$ 3441 (O-H), 2970, 2947, 2922, 2903, 2847, $2806(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 3.02$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 2.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~A}), 2.42(2 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}), 2.23\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, 2.17 (2H, dd, $J 11.0,2.1, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 1.65$ (2H, ddd, $J 13.6,5.9,0.8, \mathrm{H} 6 \mathrm{~A}, \mathrm{H} 8 \mathrm{~A}), 1.42-1.23$ (3H, $\mathrm{m}, \mathrm{H} 6 \mathrm{~B}, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 8 \mathrm{~B}), 1.04\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 0.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 80.7,59.5,53.6,41.3,37.4,25.7,22.5,13.0 ; m / z(\mathrm{ESI}+) 198\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 198.1858, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 198.1858 .

The reaction was conducted according to the general procedure using 3-isopropyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-one ${ }^{[3]}$ 9b ($236 \mathrm{mg}, 1.13 \mathrm{mmol}$), sodium borohydride ($259 \mathrm{mg}, 6.86$ $\mathrm{mmol})$ and ethanol/water $(10 \mathrm{~mL})$ to afford the title compounds as a mixture of epimers (1:1.7, 9r:9s) which was separated to give alcohol $\mathbf{1 0 b}(109 \mathrm{mg}, 0.516 \mathrm{mmol}, 46 \%)$ as a colourless solid after flash chromatography (1:9, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3354(\mathrm{O}-\mathrm{H}), 2968,2947$, 2922, 2903, 2854, $2789(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 2.90(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 2.77(1 \mathrm{H}, \mathrm{m}$, H7A), $2.66(2 \mathrm{H}, \mathrm{dd}, J 10.3,1.3, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}), 2.54\left(1 \mathrm{H}\right.$, sept., $\left.J 6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.09(2 \mathrm{H}, \mathrm{dd}, J$ $11.6,2.3, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 1.63$ ($2 \mathrm{H}, \mathrm{tdd}, J 13.5,6.5,2.2, \mathrm{H} 6 \mathrm{~A}, \mathrm{H} 8 \mathrm{~A}$), 1.35-1.22 (3H, m, H6B, H7B, H8B), $0.96\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.82\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 82.0$, $62.8,54.9,36.9,32.3,25.8,22.0,18.4 ; m / z(\mathrm{ESI}+) 212\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 210\left(\mathrm{M}-\mathrm{H}^{+}, 20\right)$. Found 212.2012, $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 212.2014.

A second fraction afforded alcohol 11b ($53 \mathrm{mg}, 0.251 \mathrm{mmol}, 22 \%$) as a yellow oil. $v_{\max }$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3377,3356(\mathrm{O}-\mathrm{H}), 2962,2928,2870,2851(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ_{H} $3.02(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 2.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~A}), 2.56\left(1 \mathrm{H}\right.$, sept., $\left.J 6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.44(2 \mathrm{H}, \mathrm{dd}, J 10.9,2.1$, H2A, H4A), 2.32 (2H, d, J 10.7, H2B, H4B), 1.63 (2H, ddd, $J 14.0,6.3,1.2, ~ H 6 A, H 8 A), 1.45-1.19$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H} 6 \mathrm{~B}, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 8 \mathrm{~B}$), $\left.0.99\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.84(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH})_{3}\right),{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 81.0,55.3,54.9,41.6,37.3,25.8,22.6,18.7 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 212\left([\mathrm{M}+\mathrm{H}]^{+}, 25\right), 211(40)$, $210\left([\mathrm{M}-\mathrm{H}]^{+}, 100\right)$. Found $[\mathrm{M}-\mathrm{H}]^{+} 210.1852, \mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}-\mathrm{H}]^{+}\right)$requires 210.1858.
(9s)-3-tert-Butyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-ol 10c

The reaction was conducted according to the general procedure using tert-butyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-one ${ }^{[3]} 9 \mathrm{c}(82.7 \mathrm{mg}, 0.37 \mathrm{mmol})$, sodium borohydride ($28.0 \mathrm{mg}, 0.74$ $\mathrm{mmol})$ and ethanol$/$ water $(6 \mathrm{~mL})$ to afford the title compound as a mixture of epimers ($1: 1.7,9 r: 9 s)$ which was separated to give $\mathbf{1 0 c}(40.2 \mathrm{mg}, 0.178 \mathrm{mmol}, 48 \%)$ as a colourless solid. $v_{\max }$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3346(\mathrm{O}-\mathrm{H}), 2968,2949,2907,2868,2851,2791(\mathrm{C}-\mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 2.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 2.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~A}), 2.84(2 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}), 2.07(2 \mathrm{H}, \mathrm{dd}, J$ 11.7, 2.1, H2B, H4B), 1.64 (2H, tdd, J 13.2, $6.4,2.0, ~ H 6 A, H 8 A), 1.35-1.22(3 H, m, H 6 B, H 7 B$, H8B), $1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.81\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} 82.1,59.9$, 53.6, 36.9, 32.5, 26.6, 26.3, 22.1; m/z (ESI+) $226\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 170$ (10). Found 226.2169, $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 226.2171.

The minor isomer 11c was not isolated.

General Procedure for Acetylation

To a solution of alcohol (1 eq) and 4-(dimethylamino)pyridine (0.1 eq) in dichloromethane was added triethylamine (2 eq) and acetic anhydride (4 eq) under nitrogen. The reaction mixture was heated at reflux for 24 h at which time the reaction was quenched by the addition of saturated sodium hydrogen carbonate solution (10 mL) and the organic material extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure to give crude acetate which was subsequently purified by flash chromatography (ethyl acetate:hexane) to give the target compound.
(10s)-8-Ethyl-8-azabicyclo[4.3.1]decan-10-yl acetate 8a

The reaction was conducted according to the general procedure using alcohol 7a ($67.0 \mathrm{mg}, 0.366$ mmol), 4-(dimethylamino)pyridine ($5.0 \mathrm{mg}, 0.0409 \mathrm{mmol}$), triethylamine ($0.10 \mathrm{~mL}, 0.0728 \mathrm{~g}, 0.719$ $\mathrm{mmol})$, acetic anhydride $(0.14 \mathrm{~mL}, 0.151 \mathrm{~g}, 1.48 \mathrm{mmol})$ and dichloromethane $(2.5 \mathrm{~mL})$ to afford the title compound 8a ($0.0696 \mathrm{~g}, 0.309 \mathrm{mmol}, 85 \%$) as a clear colourless oil after flash chromatography (1:9, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2968,2943,2918,2858,2802,2781,2758(\mathrm{C}-\mathrm{H})$, $1740(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.95(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{H} 10), 2.69(2 \mathrm{H}, \mathrm{dd}, J 11.1,2.1$, H7A, H9A), $2.31-2.20(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6), 2.24\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right)$, $2.08(2 \mathrm{H}, \mathrm{dd}, J 11.1,3.1, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}), 1.91-1.77(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}), 1.66-1.52(4 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 170.9,78.2$, 60.2, 52.5, 36.0, 32.1, 27.1, 21.7, 13.0; m/z (ESI+) 226 ([M+H] ${ }^{+}$, 100), 224 (27). Found 226.1804, $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 226.1807.

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{b}(0.100 \mathrm{~g}, 0.507$ mmol), 4-(dimethylamino)pyridine ($6.3 \mathrm{mg}, 0.0516 \mathrm{mmol}$), triethylamine ($0.14 \mathrm{~mL}, 0.103 \mathrm{~g}, 1.01$ $\mathrm{mmol})$, acetic anhydride ($0.19 \mathrm{~mL}, 0.207 \mathrm{~g}, 2.02 \mathrm{mmol}$) and dichloromethane (5 mL) to afford the title compound $\mathbf{8 b}(0.113 \mathrm{~g}, 0.473 \mathrm{mmol}, 93 \%)$ as a clear colourless oil after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2962,2941,2916,2860,2799,2785,2746(\mathrm{C}-\mathrm{H})$, $1736(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.89(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{H} 10), 2.66(1 \mathrm{H}$, sept., $J 6.6$, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.57$ (2H, dd, $\left.J 11.3,2.4, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}\right), 2.34$ (2H, dd, $\left.J 11.5,3.1, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}\right), 2.20$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6$), $2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 1.86-1.74(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}), 1.62-1.49$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}), 0.93\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$ 170.8, 78.6, 53.3, 54.4, 36.0, 32.1, 27.2, 21.7, 18.3; $m / z(E S I+) 240\left([M+H]^{+}, 86\right), 238(100)$. Found 240.1955, $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 240.1964 .

(10s)-8-tert-Butyl-8-azabicyclo[4.3.1]decan-10-yl acetate $\mathbf{8 c}{ }^{[3]}$

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{c}(0.112 \mathrm{~g}, 0.529$ mmol), 4-(dimethylamino)pyridine ($6.5 \mathrm{mg}, 0.0532 \mathrm{mmol}$), triethylamine ($0.15 \mathrm{~mL}, 0.109 \mathrm{~g}, 1.08$ $\mathrm{mmol})$, acetic anhydride $(0.20 \mathrm{~mL}, 0.216 \mathrm{~g}, 2.12 \mathrm{mmol})$ and dichloromethane $(2.5 \mathrm{~mL})$ to afford the title compound $8 \mathbf{~ c}(0.129 \mathrm{~g}, 0.509 \mathrm{mmol}, 96 \%)$ as a clear colourless oil after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2968,2943,2914,2874,2860,2789(\mathrm{C}-\mathrm{H}), 1738$ (C=O); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.91(1 \mathrm{H}, \mathrm{t}, J 5.6, \mathrm{H} 10), 2.84(2 \mathrm{H}, \mathrm{dd}, J 8.5,2.5, \mathrm{H} 7 \mathrm{~A}$, H9A), 2.27-2.20 (4H, m, H1, H6, H7B, H9B), $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 1.94-1.77(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}$, H3A, H4A, H5A), 1.64-1.51 (4H, m, H2B, H3B, H4B, H5B), $1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 170.9,78.9,53.3,52.9,36.3,32.1,27.3,26.5,21.8 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 254\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100), 252 (25), 198 (23). Found $254.2105, \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 254.2120.

(10s)-8-Propyl-8-azabicyclo[4.3.1]decan-10-yl acetate 8d

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{d d}(80.2 \mathrm{mg}, 0.406$ mmol), 4-(dimethylamino)pyridine ($5.7 \mathrm{mg}, 0.0548 \mathrm{mmol}$), triethylamine ($0.115 \mathrm{~mL}, 83.7 \mathrm{mg}$, $0.827 \mathrm{mmol})$, acetic anhydride ($0.155 \mathrm{~mL}, 0.168 \mathrm{~g}, 1.64 \mathrm{mmol}$) and dichloromethane (5 mL) to afford the title compound $\mathbf{8 d}(78.2 \mathrm{mg}, 0.328 \mathrm{mmol}, 81 \%)$ as a clear colourless oil after flash chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2941,2918,2874,2860,2804$, 2779, $2752(\mathrm{C}-\mathrm{H}), 1738(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.94(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{H} 10), 2.63(2 \mathrm{H}$, dd, $J 8.9,2.2, ~ H 7 A, H 9 A), 2.24-2.03(4 H, m, H 1, H 6, H 7 B, H 9 B), 2.13(2 H, q, J 7.2$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 1.89-1.78(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}), 1.65-1.38(4 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}), 1.44\left(2 \mathrm{H}\right.$, sext., $\left.J 7.1, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90(3 \mathrm{H} \mathrm{t}, J 7.3$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 170.9,78.92,60.7,60.6,30.0,32.1,27.1,21.7$, 20.8, 12.4; m/z (ESI+) $240\left([\mathrm{M}+\mathrm{H}]^{+}, 29\right), 238$ (100). Found 240.1951, $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ requires 240.1964 .
(10s)-8-Benzyl-8-azabicyclo[4.3.1]decan-10-yl acetate 8e

The reaction was conducted according to the general procedure using alcohol $7 \mathrm{e}(198 \mathrm{mg}, 8.07$ mmol), 4-(dimethylamino)pyridine ($9.8 \mathrm{mg}, 0.080 \mathrm{mmol}$), triethylamine ($0.22 \mathrm{~mL}, 163 \mathrm{mg}, 1.61$ $\mathrm{mmol})$, acetic anhydride ($0.30 \mathrm{~mL}, 0.329 \mathrm{~g}, 3.22 \mathrm{mmol}$) and dichloromethane (8 mL) to afford the title compound $\mathbf{8 e}(227 \mathrm{mg}, 0.790 \mathrm{mmol}, 98 \%)$ as a colourless oil after flash chromatography ($1: 9$, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2915,2858,2801(\mathrm{C}-\mathrm{H}), 1732(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.33-7.23\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.98(1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{H} 10), 3.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 2.46(2 \mathrm{H}$, d, J 10.9, H7A, H9A), 2.23-1.48 (12H, m, H1, H2, H3, H4, H5, H6, H7B, H9B), 2.07 (3H, s, OCOCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 170.7,139.2,129.0,128.3,127.0,77.8,63.4,60.2,35.7$, 31.6, 27.0, 21.5; $m / z(\mathrm{ESI}+) 288\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 288.1958, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 288.1964.

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{f}(102 \mathrm{mg}, 0.514$ mmol), 4-(dimethylamino)pyridine ($6.3 \mathrm{mg}, 0.051 \mathrm{mmol}$), triethylamine ($104 \mathrm{mg}, 1.03 \mathrm{mmol}$), acetic anhydride ($210 \mathrm{mg}, 2.06 \mathrm{mmol}$) and dichloromethane (5 mL) to afford the title compound $\mathbf{8 f}$ ($123 \mathrm{mg}, 0.514 \mathrm{mmol}, 99 \%$) as a colourless oil after flash chromatography ($1: 19$, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2966,2914,2795,2764(\mathrm{C}-\mathrm{H}), 1740(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 11), 2.72(2 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{H} 8 \mathrm{~A}, \mathrm{H} 10 \mathrm{~A}), 2.30(2 \mathrm{H}, \mathrm{q}, J 6.7$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.13-2.09(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 7, \mathrm{H} 8 \mathrm{~B}, \mathrm{H} 10 \mathrm{~B}), 2.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCOCH}_{3}\right), 1.79-1.67(10 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6), 1.04\left(3 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 170.6,77.2$, 57.4, 52.1, 35.0, 32.2, 30.9, 24.6, 21.6, 12.5; m/z (ESI+) $240\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. Found 240.1953, $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 240.1964.

(11s)-9-tert-Butyl-9-azabicyclo[5.3.1]undecan-11-yl acetate $\mathbf{8 g}$

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{g}(84.1 \mathrm{mg}, 0.373$ mmol), 4-(dimethylamino)pyridine ($5.0 \mathrm{mg}, 0.041 \mathrm{mmol}$), triethylamine ($75.7 \mathrm{mg}, 0.748 \mathrm{mmol}$), acetic anhydride ($152 \mathrm{mg}, 1.49 \mathrm{mmol}$) and dichloromethane $(3.7 \mathrm{~mL})$ to afford the title compound $\mathbf{8 g}(69.1 \mathrm{mg}, 0.258 \mathrm{mmol}, 69 \%)$ as a colourless oil after flash chromatography ($1: 19$, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2966,2916,2868,2795(\mathrm{C}-\mathrm{H}), 1738(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.97(1 \mathrm{H}, \mathrm{t}, J 5.4, \mathrm{H} 11), 2.87(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{H} 8 \mathrm{~A}, \mathrm{H} 10 \mathrm{~A}), 2.27$ (2H, dd, $J 11.5$, 2.6, H8B, H10B), 2.07 (5H, m, H1, H7, OCOCH $)_{3}$, 1.81-1.55 (10H, m, H2, H3, H4, H5, H6), 1.04 ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 170.7,78.6,53.5,50.8,35.6,32.3,31.2,26.4$, 24.5, 21.7; m/z (ESI+) $268\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 212 (14). Found 268.2268, $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ requires 268.2277 .

The reaction was conducted according to the general procedure using alcohol $\mathbf{1 0 a}(97.9 \mathrm{mg}, 0.496$ mmol), 4-(dimethylamino)pyridine ($6.8 \mathrm{mg}, 0.056 \mathrm{mmol}$), triethylamine ($102 \mathrm{mg}, 1.0 \mathrm{mmol}$), acetic anhydride ($206 \mathrm{mg}, 2.0 \mathrm{mmol}$) and dichloromethane $(2.0 \mathrm{~mL})$ to afford the title compound $\mathbf{1 2 a}(110$ $\mathrm{mg}, 0.460 \mathrm{mmol}, 92 \%$) as a colourless oil after flash chromatography ($1: 4$, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2967,2929,2755(\mathrm{C}-\mathrm{H}), 1739(\mathrm{C}=\mathrm{O}), 1241(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 2.81-2.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~A}), 2.71(2 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}), 2.14(2 \mathrm{H}, \mathrm{q}, J 6.4$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}\right), 1.89(2 \mathrm{H}, \mathrm{dd}, J 11.7,2.2, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 1.55(2 \mathrm{H}, \mathrm{tdd}, J 13.6,6.5$, 2.3, H6A, H8A), 1.40-1.22 (3H, m, H6B, H7B, H8B), 0.98 (3H, t, J 7.2, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.69(6 \mathrm{H}, \mathrm{s}$, CCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.4,81.9,65.8,52.2,35.8,32.2,30.0,25.2,21.1,13.0$; $m / z(\mathrm{ESI}+) 240\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 238(89)$. Found 240.1958. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 240.1964.

(9s)-3-tert-Butyl-1,5-dimethyl-3-azabicyclo[3.3.1]nonan-9-yl acetate 12c

The reaction was conducted according to the general procedure using alcohol $\mathbf{1 0 c}(81.5 \mathrm{mg}, 0.317$ mmol), 4-(dimethylamino)pyridine ($4.4 \mathrm{mg}, 0.036 \mathrm{mmol}$), triethylamine ($73.4 \mathrm{mg}, 0.725 \mathrm{mmol}$), acetic anhydride ($148 \mathrm{mg}, 1.45 \mathrm{mmol}$) and dichloromethane $(3.6 \mathrm{~mL})$ to afford the title compound 12c ($88.9 \mathrm{mg}, 0.332 \mathrm{mmol}, 92 \%$) as a colourless oil after flash chromatography ($1: 9$, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2966,2926,2910,2872,2853(\mathrm{C}-\mathrm{H}), 1738(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.52(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 2.91-2.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~A}), 2.81(2 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}), 2.16$ (2H, dd, J 11.7, 1.9, H2B, H4B), 2.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}$), 1.66-1.49 (2H, m, H6A, H8A), 1.41-1.25 (3H, m, H6B, H7B, H8B), $1.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NC}(\mathrm{CH})_{3}\right), 0.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.4,82.3,68.3,53.0,35.5,32.3,29.8,26.0,25.2,21.2 ; m / z(\mathrm{ESI}+) 268\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 212$ (21). Found 268.2270, $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 268.2277.

General Procedure for Esterification

To a solution of alcohol (1 eq) and acid chloride (1.5 eq) in dichloromethane $(0.25 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine (2.1 eq) dropwise under nitrogen. The solution was warmed to room temperature and the reaction heated at reflux for 16 h at which time the reaction was quenched by the addition of saturated sodium hydrogen carbonate solution $(10 \mathrm{~mL})$ and the organic material extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and the solvent removed under reduced pressure to give crude acetate which was subsequently purified by flash chromatography (ethyl acetate:hexane) to give the target compound.

(10s)-8-Isopropyl-8-azabicyclo[4.3.1]decan-10-yl cyclohexanecarboxylate $\mathbf{1 3}$

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{b}$ ($70.0 \mathrm{mg}, 0.355$ mmol), cyclohexanecarbonyl chloride ($77.7 \mathrm{mg}, 0.530 \mathrm{mmol}$), triethylamine ($76.4 \mathrm{mg}, 0.755 \mathrm{mmol}$) and dichloromethane $(1.5 \mathrm{~mL})$ to afford the title compound $\mathbf{1 3}(100 \mathrm{mg}, 0.326 \mathrm{mmol}, 92 \%)$ as a colourless oil after chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2961,2930$, 2854, 2799, $2787(\mathrm{C}-\mathrm{H}), 1728(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.93(1 \mathrm{H}, \mathrm{t}, J 5.6, \mathrm{H} 10)$, $2.69\left(1 \mathrm{H}\right.$, sept., $\left.J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.60(2 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.37$ ($2 \mathrm{H}, \mathrm{dd}, J 11.5,3.1, \mathrm{H} 7 \mathrm{~B}$, H9B), 2.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), 2.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6$), 1.94-1.22 ($18 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$, H3, H4, H5, H2', H3', H4', H5', H6'), $0.96\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 175.7,77.9,55.3,54.2$, $43.8,36.0,32.0,29.3,27.1,26.0,25.7,18.2 ; m / z(E S I+) 308\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right), 306$ (100). Found 308.2576, $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 308.2590 .

(10s)-8-Isopropyl-8-azabicyclo[4.3.1]decan-10-yl pivalate 14

The reaction was conducted according to the general procedure using alcohol $\mathbf{7 b}$ ($70.1 \mathrm{mg}, 0.355$ mmol), pivaloyl chloride ($64.6 \mathrm{mg}, 0.536 \mathrm{mmol}$), triethylamine ($76.4 \mathrm{mg}, 0.755 \mathrm{mmol}$) and
dichloromethane (1.5 mL) to afford the title compound $\mathbf{1 4}(99.0 \mathrm{mg}, 0.352 \mathrm{mmol}, 99 \%)$ as a colourless oil after chromatography (1:9, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2964,2945,2914$, 2872, 2860, 2799, $2785(\mathrm{C}-\mathrm{H}), 1726(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.92(1 \mathrm{H}, \mathrm{t}, J 5.7$, H10), $2.69\left(1 \mathrm{H}\right.$, sept., $\left.J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.60(2 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.37(2 \mathrm{H}, \mathrm{dd}, J 11.6$, 2.7, H7B, H9B), 2.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6$), $1.91-1.78(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A}), 1.66-1.52(4 \mathrm{H}$, m, H2B, H3B, H4B, H5B), $1.22\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.96\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 178.1,78.0,55.3,54.2,39.1,36.0,32.0,27.5,27.1,18.2 ; \mathrm{m} / \mathrm{z}$ (ESI+) 282 $\left([\mathrm{M}+\mathrm{H}]^{+}, 38\right), 280(100)$. Found 282.2421, $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 282.2433 .

(10s)-8-Isopropyl-8-azabicyclo[4.3.1]decan-10-yl 2-methoxybenzoate 15

The reaction was conducted according to the general procedure using alcohol 7b ($70.1 \mathrm{mg}, 0.355$ mmol), o-anisoyl chloride ($90.5 \mathrm{mg}, 0.531 \mathrm{mmol}$), triethylamine ($76.4 \mathrm{mg}, 0.755 \mathrm{mmol}$) and dichloromethane (1.5 mL) to afford the title compound $15(95.4 \mathrm{mg}, 0.288 \mathrm{mmol}, 81 \%)$ as a colourless solid after chromatography (1:19, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2962,2914$, 2858, 2799, $2785(\mathrm{C}-\mathrm{H}), 1724(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.85(1 \mathrm{H}, \mathrm{dd}, J$ 8.1, 1.8, H6'), 7.45 ($\left.1 \mathrm{H}, \mathrm{td}, J 7.4,1.1, \mathrm{H}^{\prime}\right), 6.99-6.95$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}$, H5'), 5.20 ($1 \mathrm{H}, \mathrm{t}, J 5.6, \mathrm{H} 10$), $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 2.71\left(1 \mathrm{H}\right.$, sept., $\left.J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.64(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.43$ ($2 \mathrm{H}, \mathrm{dd}, J 11.6,2.7, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}), 2.36(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6), 2.01-1.86(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~A}, \mathrm{H} 3 \mathrm{~A}, \mathrm{H} 4 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A})$, $1.80-1.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 5 \mathrm{~B}), 1.61-1.53(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~B}, \mathrm{H} 4 \mathrm{~B}), 0.98\left(6 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 165.7,158.4,133.4,131.8,120.8,120.2,112.0,78.8,55.8,55.3,54.2$, 36.1, 32.0, 26.9, 18.1; m / z (ESI+) 685 (24), 354 (18), 332 ($[\mathrm{M}+\mathrm{H}]^{+}, 100$). Found 332.2214, $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 332.2226.
(10s)-8-Isopropyl-8-azabicyclo[4.3.1]decan-10-yl cyclohexanecarboxylate 16

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{c}$ ($100 \mathrm{mg}, 0.473$ mmol), cyclohexanecarbonyl chloride ($106 \mathrm{mg}, 0.721 \mathrm{mmol}$), triethylamine ($98.3 \mathrm{mg}, 0.971 \mathrm{mmol}$)
and dichloromethane (2.0 mL) to afford the title compound $16(105 \mathrm{mg}, 0.327 \mathrm{mmol}, 69 \%)$ as a clear colourless oil after chromatography (1:9, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2968,2918$, 2854, 2789, 2733, $2667(\mathrm{C}-\mathrm{H}), 1728(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.92(1 \mathrm{H}, \mathrm{t}, J 5.7$, H10), $2.84(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.31\left(1 \mathrm{H}, \mathrm{tt}, J 11.2,3.6, \mathrm{H} 1{ }^{\prime}\right), 2.25(2 \mathrm{H}, \mathrm{dd}, J 11.1,3.8$, H7B, H9B), 2.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6$), 1.99-1.92 (4H, m, H2A', H3A, H4A, H6A'), 1.84-1.74 (4H, m, H2A, H3A', H5A, H5A'), 1.68-1.59 (3H, m, H3B, H4A', H4B), 1.55-1.41 (4H, m, H2B, H2B', H5B, H6B') 1.34-1.21 (3H, m, H3B', H4B', H5B'), $1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 175.7,78.1,53.1,52.7,43.9,36.2,31.9,29.3,27.1,26.4,26.0,25.7 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 322$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 266(28)$. Found 322.2739, $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 322.2746.

(10s)-8-tert-Butyl-8-azabicyclo[4.3.1]decan-10-yl 2-methoxybenzoate 17

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{c}(74.9 \mathrm{mg}, 0.354$ mmol), o-anisoyl chloride ($90.5 \mathrm{mg}, 0.531 \mathrm{mmol}$), triethylamine ($76.4 \mathrm{mg}, 0.755 \mathrm{mmol}$) and dichloromethane (1.5 mL) to afford the title compound $17(98.6 \mathrm{mg}, 0.285 \mathrm{mmol}, 81 \%)$ as a colourless solid after chromatography (1:9, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2968,2943$, 2912, 2856, 2787, $2733(\mathrm{C}-\mathrm{H}), 1724(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.85(1 \mathrm{H}, \mathrm{d}, J 7.2$, $\left.\mathrm{H}^{\prime}\right), 7.46\left(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{H}^{\prime}\right), 7.00-6.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}{ }^{\prime}, \mathrm{H}^{\prime}\right), 5.19(1 \mathrm{H}, \mathrm{t}, J 4.9, \mathrm{H} 10), 3.89(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 2.89(2 \mathrm{H}, \mathrm{d}, J 10.4, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.35-2.31(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}), 1.99-1.93$ (4H, m, H2A, H3A, H4A, H5A), 1.77-1.68 (2H, m, H2B, H5B), 1.62-1.53 (2H, m, H3B, H4B), 1.05 (9H, s, $\left.\mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 165.8,159.5,133.4,131.9,120.8,120.2,112.1$, $79.1,55.9,53.1,52.8,36.3,31.9,27.0,26.4 ; m / z(\mathrm{ESI}+) 713$ (48), $368(25), 346\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 290$ (39). Found $346.2369, \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 346.2382 .

(10s)-8-tert-Butyl-8-azabicyclo[4.3.1]decan-10-yl 4-methoxybenzoate 18

The reaction was conducted according to the general procedure using alcohol $7 \mathbf{c}(75.0 \mathrm{mg}, 0.355$ mmol), p-anisoyl chloride ($90.4 \mathrm{mg}, 0.530 \mathrm{mmol}$), triethylamine ($76.4 \mathrm{mg}, 0.755 \mathrm{mmol}$) and
dichloromethane (1.5 mL) to afford the title compound $\mathbf{1 8}(119 \mathrm{mg}, 0.344 \mathrm{mmol}, 97 \%)$ as a colourless solid after chromatography (1:9, ethyl acetate:hexane). $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2968$, 2947, 2918, 2854, 2799, 2787 (C-H), 1709 (C=O), 1606, 1510 ($\mathrm{C}=\mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{H} 8.03 (2H, d, $J 8.8, \mathrm{H}^{\prime}$ ', H6'), 6.93 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{H}^{\prime}$ ' H5'), 5.17 ($1 \mathrm{H}, \mathrm{t}, J 5.4, \mathrm{H} 10$), 3.86 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArOCH}_{3}\right), 2.90(2 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.34(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}), 2.08-1.85(4 \mathrm{H}, \mathrm{m}$, H2A, H3A, H4A, H5A), 1.78-1.55 (4H, m, H2B, H3B, H4B, H5B), $1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 165.9,163.4,131.7,123.6,113.8,78.9,55.6,53.2,52.8,36.4,32.0$, 27.3, 26.4; m/z (ESI+) $346\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$, 290 (33). Found 346.2369, $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ requires 346.2382 .
(10s)-10-Acetoxy-8-azoniabicyclo[4.3.1]decane formate $\mathbf{1 9}$

Ammonium formate ($87.8 \mathrm{mg}, 1.39 \mathrm{mmol}$) was added to a solution of N-benzylamine $\mathbf{8 e}(80.0 \mathrm{mg}$, 0.278 mmol) and an equal weight of palladium on charcoal ($10 \% \mathrm{wt}$) in dry methanol (20 mL). The mixture was heated at reflux for 12 min under nitrogen. The mixture was allowed to cool to room temperature and filtered through a pad of celite, washing with methanol and dichloromethane. The volatile solvent was removed under reduced pressure to afford the title compound 19 (48.7 mg , $0.200 \mathrm{mmol}, 72 \%)$ as a colourless solid. $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3354(\mathrm{~N}-\mathrm{H}), 2914,2858,2802,2729$ $(\mathrm{C}-\mathrm{H}), 1734(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} 8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}), 5.10(1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{H} 10)$, 2.96-2.84 (4H, m, H7, H9), $2.21(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6), 2.07\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCOCH}_{3}\right), 1.97-1.74(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$, H3A, H4A, H5), 1.62-1.55 (2H, m, H3B, H4B); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ_{C} 172.0, 170.4, 78.4, 52.9, 36.4, 31.8, 28.1, 21.2; $m / z(E S I+) 198\left(\left[M-\mathrm{OCHO}^{-}\right]^{+}, 100\right)$. Found 198.1481, $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\left[\mathrm{M}-\mathrm{OCHO}^{-}\right]^{+}\right)$requires 198.1489.
(10s)-8-(4-Chlorobenzyl)-8-azabicyclo[4.3.1]dec-10-yl acetate 20

Sodium triacetoxyborohydride ($73.9 \mathrm{mg}, 0.348 \mathrm{mmol}$) was added to a solution of amine 19 (60.6 $\mathrm{mg}, 0.249 \mathrm{mmol})$ and p-chlorobenzaldehyde $(35.0 \mathrm{mg}, 0.249 \mathrm{mmol})$ in dichloroethane $(2.5 \mathrm{~mL})$ and the mixture stirred under nitrogen at room temperature for 30 h . The reaction was quenched by the addition of sodium bicarbonate (sat. 10 mL) and the organic material extracted into
dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to give crude acetate which was subsequently purified by flash chromatography (1:19, ethyl acetate:hexane) to give the title compound $20(67.0 \mathrm{mg}, 0.208 \mathrm{mmol}, 84 \%)$ as a colourless oil. $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2917,2858,2797$ $(\mathrm{C}-\mathrm{H}), 1736(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.27(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.98(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{H} 10)$, $3.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{Ar}\right), 2.64(2 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.23(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6), 2.15(2 \mathrm{H}, \mathrm{dd}, J 11.4$, 3.0, H7B, H9B), 2.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCOCH}_{3}$), 1.98-1.47 (8H, m, H2, H3, H4, H5); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 170.7,137.7,132.6,130.3,128.4,77.6,62.6,60.1,35.6,31.6,26.9,21.5 ; m / z(\mathrm{ESI}+) 324$ (35), $322\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 138$ (30), 125 (32). Found 324.1556, $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}{ }^{37} \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 324.1544; Found 322.1579, $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}{ }^{35} \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$requires 322.1574 .
(10s)-8-(4-Hydroxybenzyl)-8-azabicyclo[4.3.1]dec-10-yl acetate 21

Sodium triacetoxyborohydride ($70.3 \mathrm{mg}, 0.332 \mathrm{mmol}$) was added to a solution of ammonium salt 19 ($57.9 \mathrm{mg}, 0.238 \mathrm{mmol}$) and p-methoxybenzaldehyde ($29.1 \mathrm{mg}, 0.238 \mathrm{mmol}$) in dichloroethane $(2.5 \mathrm{~mL})$ and the mixture stirred under nitrogen at room temperature for 30 h . The reaction was quenched by the addition of sodium bicarbonate (sat. 10 mL) and the organic material extracted into dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over magnesium sulfate, filtered and the solvent removed under reduced pressure to give crude acetate which was subsequently purified by flash chromatography ($1: 4$, ethyl acetate:hexane) to give the title compound $21(71.3 \mathrm{mg}, 0.235 \mathrm{mmol}, 99 \%)$ as a colourless oil. $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3401(\mathrm{O}-\mathrm{H}), 2916$, $2800(\mathrm{C}-\mathrm{H}), 1735,1708(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.16\left(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{H}^{\prime}\right.$ ', H6'), 6.79 ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{H}^{\prime}$ ', H5'), $5.81(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 5.00(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{H} 10), 3.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} \mathrm{N}_{2} \mathrm{Ar}\right), 2.65$ ($2 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{H} 7 \mathrm{~A}, \mathrm{H} 9 \mathrm{~A}), 2.22(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 6), 2.11(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 7 \mathrm{~B}, \mathrm{H} 9 \mathrm{~B}), 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOH}_{3}\right)$, 2.08-1.45 (8H, m, H2, H3, H4, H5); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} 171.2,154.8,131.1,130.3$, 115.1, 78.2, 62.6, 60.0, 35.7, 31.6, 26.9, 21.5; m/z (EI) 303 (${ }^{+\bullet}, 30$), 244 (51), 228 (34), 196 (32), $138(48), 107(100), 91(45), 43(37)$. Found $303.1834, \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$requires 303.1834.

The two-electrode voltage-clamp electrophysiology functional assay was conducted on esters $\mathbf{8 c}$, $\mathbf{8 e}, \mathbf{8 g}, 12 \mathrm{c}, 17$ and $\mathbf{1 8}$ according to previously reported procedures ${ }^{[4]}$ with the following minor modifications. Oocytes were stored at $18{ }^{\circ} \mathrm{C}$ in frog ringer solution containing gentamycin (50 $\mu \mathrm{M} / \mathrm{mL})$, or calcium free frog ringer solution containing $\mathrm{BaCl}_{2}(1.8 \mathrm{mM})$ and kanamycin $(4 \mathrm{mg} / \mathrm{L})$ for cells injected with $\alpha 7 \mathrm{mRNA}$. Oocytes were continually superfused by frog ringer solution or calcium free frog ringer solution containing $\mathrm{BaCl}_{2}(1.8 \mathrm{mM})$ and atropine $(1 \mu \mathrm{M})$ for cells expressing $\alpha 7 \mathrm{nAChR}$. Test compounds were applied to oocytes at intervals of $8-9 \mathrm{~min}$. The amplitude of the current (I) recorded in response to each drug was normalised to the amplitude $\left(I_{\mathrm{m}}\right)$ of the current response to acetylcholine ($\alpha 3 \beta 4,150 \mu \mathrm{M} ; \alpha 4 \beta 2,150 \mu \mathrm{M} ; \alpha 7,300 \mu \mathrm{M}$).

$\alpha 3 \beta 4$

Inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ response curves at rat $\alpha 3 \beta 4$ receptor expressed in Xenopus oocytes of $\mathbf{8 c}, 8 \mathbf{8}, 8 \mathrm{~g}, 12 \mathrm{c}, 17$ and $\mathbf{1 8}$ in the presence of and normalized to the current response by acetylcholine $(150 \mu M)$. Data are the mean \pm SEM ($n>3$ oocytes).
$\alpha 4 \beta 2$

Inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ response curves at rat $\alpha 4 \beta 2$ receptor expressed in Xenopus oocytes of $\mathbf{8 c}, \mathbf{8 e}, \mathbf{8 g}, 17$ and $\mathbf{1 8}$ in the presence of and normalized to the current response by acetylcholine $(100 \mu \mathrm{M})$. Data are the mean \pm SEM ($\mathrm{n}>3$ oocytes). Data for ester 12c did not provide a good fit to the model and so was not reported.

$$
\alpha 7
$$

Inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ response curves at rat $\alpha 7$ receptor expressed in Xenopus oocytes of $8 \mathrm{c}, 8 \mathrm{~g}, 12 \mathrm{c}, 17$ and 18 in the presence of and normalized to the current response by acetylcholine $(300 \mu \mathrm{M})$. Data are the mean \pm SEM ($\mathrm{n}>3$ oocytes). The IC_{50} inhibitory concentration response curve for ester $\mathbf{8 e}$ was not completed.

References:

[1] C. Brocke, M. A. Brimble, D. S.-H. Lin, M. D. McLeod, Synlett 2004, 2359-2363.
[2] D. L. Fields, J. B. Miller, D. D. Reynolds, J. Org. Chem. 1962, 27, 2749-2753.
[3] J. I. Halliday, M. Chebib, P. Turner, M. D. McLeod, Org. Lett. 2006, 8, 3399-3401.
[4] D. Barker, D. H.-S. Lin, J. E. Carland, C. P.-Y. Chu, M. Chebib, M. A. Brimble, G. P. Savage, M. D. McLeod, Bioorg. Med. Chem. 2005, 13, 4565-4575.

$50 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

тן $\begin{array}{llllllllllll}\text { ppm } & 220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20\end{array}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

220	200	180	160	1	140	120	100	80	1	60	40	20

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

220	200	180	160	140	120	100	80	60	40	20

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

75.5 MHz, ${ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

,	0	8	60	,	,	,	1	1		1	
220	200	180	160	140	120	100	80	60	40	20	ppm

7 g
50.3 MHz, ${ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

10a
$400.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

10a
$50.3 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

1	1	1	1	T	1	1	1	1	1	1
220	200	180	160	140	120	100	80	60	40	20

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

1	T	1	1	1	1	1	1	1	1	1	
220	200	180	160	140	120	100	80	60	40	20	ppm

$$
300.1 \mathrm{MHz},{ }^{10} \mathrm{H}, \mathrm{CD}_{3} \mathrm{OD}
$$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

$200.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$50.3 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$200.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$50.3 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

,	,	80	6		1			60		O	
220	200	180	160	140	120	100	80	60	40	20	ppm

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$50.3 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

pon	220	200	180	160	140	120	100	80	60	40	20

Cos
$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$75 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$200 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

12c
$75 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}_{,} \mathrm{CDCl}_{3}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

	,	,	,	1	1	,	1	,	,	,	
220	200	180	160	140	120	100	80	60	40	20	ppm

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75.5 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CDCl}_{3}$

$300.1 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

$75 \mathrm{MHz},{ }^{13} \mathrm{C}, \mathrm{CD}_{3} \mathrm{OD}$

 $200 \mathrm{MHz},{ }^{1} \mathrm{H}, \mathrm{CDCl}_{3}$

