Accessory Publication

3d-4f Heterometallic Complexes for the Construction of POM-based Inorganic-Organic Hybrid Compounds: from Nanoclusters to One-Dimensional Ladder-like Chains

Dongying Du,^A Junsheng Qin,^A Shunli Li,^{A,B} Yaqian Lan,^A Xinlong Wang^A and Zhongmin Su^{A,B}

^AInstitute of Functional Material Chemistry, Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Fig. S1. The square antiprismatic geometries of the Ce1 (a) and Ce2 (b) cations in compound **3**.

(c) $2\theta / e^{30}$ 4θ 30**Fig. S2.** The XRPD patterns (top) and simulated patterns (bottom) of **1** (a), **2** (b), and **3** (c), respectively.

Fig. S3. The IR spectra of 1 (a), 2 (b) and 3 (c) in KBr pellets, respectively.

Fig. S4. The TGA curves of 1 (a), 2 (b) and 3 (c) in N_2 atmosphere from room temperature to 700 °C, respectively.

O(1W)-Nd(1)	2.550(12)	O(18)-Nd(1)-O(41)	131.1(4)
O(16)-Nd(1)	2.397(10)	O(35)-Nd(1)-O(41)	72.6(4)
O(18)-Nd(1)	2.344(10)	O(39)-Nd(1)-O(41)	81.7(4)
O(35)-Nd(1)	2.368(10)	O(16)-Nd(1)-O(41)	150.1(4)
O(39)-Nd(1)	2.371(11)	O(18)-Nd(1)-O(40)	78.6(4)
O(40)-Nd(1)	2.547(12)	O(35)-Nd(1)-O(40)	132.3(4)
O(41)-Nd(1)	2.497(10)	O(39)-Nd(1)-O(40)	144.9(4)
O(41)-Nd(1)#1	2.604(11)	O(16)-Nd(1)-O(40)	80.2(4)
		O(41)-Nd(1)-O(40)	103.6(4)
O(18)-Nd(1)-O(35)	71.2(4)	O(18)-Nd(1)-O(1W)	145.8(4)
O(18)-Nd(1)-O(39)	124.2(4)	O(35)-Nd(1)-O(1W)	142.9(4)
O(35)-Nd(1)-O(39)	82.7(4)	O(39)-Nd(1)-O(1W)	75.1(4)
O(18)-Nd(1)-O(16)	78.8(4)	O(16)-Nd(1)-O(1W)	78.0(4)
O(35)-Nd(1)-O(16)	126.7(4)	O(41)-Nd(1)-O(1W)	75.0(4)
O(39)-Nd(1)-O(16)	79.2(4)	O(40)-Nd(1)-O(1W)	73.0(4)

Table S1. Selected bond lengths [Å] and angles [deg] for 1.

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1

O(1W)-Sm(1)	2.519(14)	O(37)-Sm(1)-O(41)	132.1(6)
O(36)-Sm(1)	2.348(15)	O(36)-Sm(1)-O(41)	73.4(5)
O(37)-Sm(1)	2.352(15)	O(39)-Sm(1)-O(41)	81.8(5)
O(38)-Sm(1)	2.397(15)	O(38)-Sm(1)-O(41)	149.6(5)
O(39)-Sm(1)	2.357(14)	O(37)-Sm(1)-O(40)	77.5(5)
O(40)-Sm(1)	2.497(14)	O(36)-Sm(1)-O(40)	132.4(6)
O(41)-Sm(1)	2.465(16)	O(39)-Sm(1)-O(40)	144.4(5)
O(41)-Sm(1)#1	2.578(15)	O(38)-Sm(1)-O(40)	79.0(5)
		O(41)-Sm(1)-O(40)	103.8(5)
O(37)-Sm(1)-O(36)	71.9(6)	O(37)-Sm(1)-O(1W)	145.5(6)
O(37)-Sm(1)-O(39)	124.8(5)	O(36)-Sm(1)-O(1W)	142.5(6)
O(36)-Sm(1)-O(39)	83.1(5)	O(39)-Sm(1)-O(1W)	74.5(5)
O(37)-Sm(1)-O(38)	78.3(5)	O(38)-Sm(1)-O(1W)	78.1(5)
O(36)-Sm(1)-O(38)	127.2(5)	O(41)-Sm(1)-O(1W)	73.9(6)
O(39)-Sm(1)-O(38)	79.6(5)	O(40)-Sm(1)-O(1W)	73.5(6)

 Table S2.
 Selected bond lengths [Å] and angles [deg] for 2.

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+2

O(1W)-Ce(1)	2.57(2)	O(79)-Ce(1)-O(1W)	75.3(8)
O(12)-Ce(1)	2.395(13)	O(37)-Ce(1)-O(80)	148.6(5)
O(37)-Ce(1)	2.383(17)	O(12)-Ce(1)-O(80)	85.2(5)
O(38)-Ce(1)	2.451(13)	O(78)-Ce(1)-O(80)	80.4(5)
O(78)-Ce(1)	2.411(17)	O(38)-Ce(1)-O(80)	134.5(5)
O(79)-Ce(1)	2.566(17)	O(81)-Ce(1)-O(80)	65.7(4)
O(80)-Ce(1)	2.658(16)	O(79)-Ce(1)-O(80)	49.6(5)
O(81)-Ce(1)	2.537(14)	O(1W)-Ce(1)-O(80)	97.8(6)
O(2W)-Ce(2)	2.567(16)	O(66)-Ce(2)-O(67)	71.6(5)
O(66)-Ce(2)	2.399(13)	O(66)-Ce(2)-O(69)	80.9(5)
O(67)-Ce(2)	2.407(16)	O(67)-Ce(2)-O(69)	120.5(5)
O(68)-Ce(2)	2.441(14)	O(66)-Ce(2)-O(68)	122.8(5)
O(69)-Ce(2)	2.415(15)	O(67)-Ce(2)-O(68)	77.3(5)
O(80)-Ce(2)	2.479(13)	O(69)-Ce(2)-O(68)	75.3(5)
O(81)-Ce(2)	2.623(15)	O(66)-Ce(2)-O(80)	73.3(5)
O(82)-Ce(2)	2.550(17)	O(67)-Ce(2)-O(80)	132.4(5)
O(37)-Ce(1)-O(12)	81.0(5)	O(69)-Ce(2)-O(80)	83.8(5)
O(37)-Ce(1)-O(78)	120.5(5)	O(68)-Ce(2)-O(80)	150.0(6)
O(12)-Ce(1)-O(78)	70.6(5)	O(66)-Ce(2)-O(82)	128.5(5)
O(37)-Ce(1)-O(38)	76.2(5)	O(67)-Ce(2)-O(82)	75.5(6)
O(12)-Ce(1)-O(38)	121.9(5)	O(69)-Ce(2)-O(82)	150.6(5)
O(78)-Ce(1)-O(38)	76.6(5)	O(68)-Ce(2)-O(82)	85.8(6)
O(37)-Ce(1)-O(81)	83.3(5)	O(80)-Ce(2)-O(82)	103.6(6)
O(12)-Ce(1)-O(81)	73.4(4)	O(66)-Ce(2)-O(2W)	146.3(7)
O(78)-Ce(1)-O(81)	131.9(5)	O(67)-Ce(2)-O(2W)	142.1(7)
O(38)-Ce(1)-O(81)	151.2(5)	O(69)-Ce(2)-O(2W)	78.8(6)
O(37)-Ce(1)-O(79)	151.7(6)	O(68)-Ce(2)-O(2W)	77.1(6)
O(12)-Ce(1)-O(79)	127.3(6)	O(80)-Ce(2)-O(2W)	77.9(7)
O(78)-Ce(1)-O(79)	75.7(7)	O(82)-Ce(2)-O(2W)	75.1(7)
O(38)-Ce(1)-O(79)	86.6(5)	O(66)-Ce(2)-O(81)	85.1(5)
O(81)-Ce(1)-O(79)	103.2(6)	O(67)-Ce(2)-O(81)	78.8(5)
O(37)-Ce(1)-O(1W)	79.4(7)	O(69)-Ce(2)-O(81)	150.2(5)
O(12)-Ce(1)-O(1W)	146.5(8)	O(68)-Ce(2)-O(81)	133.9(5)
O(78)-Ce(1)-O(1W)	142.9(8)	O(80)-Ce(2)-O(81)	67.0(5)
O(38)-Ce(1)-O(1W)	79.1(7)	O(82)-Ce(2)-O(81)	50.0(5)
O(81)-Ce(1)-O(1W)	77.4(7)	O(2W)-Ce(2)-O(81)	99.7(5)

 Table S3.
 Selected bond lengths [Å] and angles [deg] for 3.