10.1071/CH10053_AC CSIRO 2010 Australian Journal of Chemistry, 2010, 63(6), 895-900

Details of X-Ray Diffraction Analysis of Australin E (1) and ¹H and ¹³C 1D NMR spectra of Australins E-H (1-4)

Details of the X-ray Diffraction Analysis of Australin E (1)

Data Collection

A colorless needle crystal of $C_{28}H_{44}O_7$ having approximate dimensions of 0.12 x 0.25 x 0.50 mm was mounted on a glass fiber. All measurements were made on a Bruker X8 APEX II diffractometer with graphite monochromated Mo-K α radiation.

The data were collected at a temperature of $-100.0 \pm 0.1^{\circ}$ C to a maximum 20 value of 51.86°. Data were collected in a series of ϕ and ω scans in 0.50° oscillations with 12.0 second exposures. The crystal-to-detector distance was 36.00 mm.

Data Reduction

Of the 19162 reflections that were collected, 5292 were unique ($R_{int} = 0.0231$); equivalent reflections were merged. Data were collected and integrated using the Bruker SAINT¹ software package. The linear absorption coefficient, μ , for Mo-K α radiation is 0.084 mm⁻¹. Data were corrected for absorption effects using the multi-scan technique (SADABS²), with minimum and maximum transmission coefficients of 0.87 and 0.99, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods³. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions but were not refined. The final cycle of full-matrix least-squares refinement⁴ on F^2 was based on 5292 reflections and 327 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| = 0.052$$

wR2 =
$$[\Sigma (w (Fo^2 - Fc^2)^2) / \Sigma w (Fo^2)^2]^{1/2} = 0.098$$

The standard deviation of an observation of unit weight⁵ was 1.05. The weighting scheme was based on counting statistics. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.609 and $-0.381 \text{ e}^{-1}/\text{Å}^3$, respectively.

Neutral atom scattering factors were taken from Cromer and Waber⁶. Anomalous dispersion effects were included in Fcalc⁷; the values for Δf and Δf " were those of Creagh and McAuley⁸. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁹. All refinements were performed using the SHELXTL¹⁰ crystallographic software package of Bruker-AXS.

References

(1) SAINT. Version 7.03A. Bruker AXS Inc., Madison, Wisconsin, USA. (1997-2003).

(2) <u>SADABS</u>. Bruker Nonius area detector scaling and absorption correction - V2.10, Bruker AXS Inc., Madison, Wisconsin, USA (2003).

(3) <u>SIR97</u> - Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. (1999) J. Appl. Cryst. 32, 115-119.

(4) Least Squares function minimized:

 $\Sigma w(F_0^2 - F_c^2)^2$

(5) Standard deviation of an observation of unit weight:

 $[\Sigma w (F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(6) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(7) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(8) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(9) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(10) SHELXTL Version 5.1. Bruker AXS Inc., Madision, Wisconsin, USA. (1997).

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System

Lattice Type

492.63 colorless, needle 0.12 X 0.25 X 0.50 mm monoclinic primitive

C₂₈H₄₄O₇

Lattice Parameters	a = 9.3711(14) A
	b = 13.5349(17) A
	c = 10.9891(17) A
	$\alpha = 90^{\circ}$
	$\beta = 99.142(7)^{0}$
	$\gamma = 90$ °
	$V = 1376.1 (3) Å^3$
Space Group	<i>P</i> 21/b
Z value	2
D _{calc}	$1.189.\ 10^{-3}\ g/cm^3$
F000	536.00
μ(ΜοΚα)	0.84 cm ⁻¹

B. Intensity Measurements

Diffractometer	Bruker X8 APEX II
Radiation	MoK α (λ = 0.71073 Å)
	Graphite monochromated
Data Images	1444 exposures @ 12 seconds
Detector Position	36 mm
20 _{max}	51.86 ⁰
No. of Reflections Measured	Total: 19162
	Unique: 5292 (R _{int} = 0.0231)
Corrections	Absorption ($T_{min} = 0.87$; $T_{max} = 0.99$)
	Lorentz-polarization

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELXL)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$
Least Squares Weights	$w=1/(\sigma^2(Fo^2)+(0.0465P)^2+0.3397P)$
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (I>0.00 σ (I))	5292
No. Variables	327
Reflection/Parameter Ratio	16.18
Residuals (refined on F ² , all data): R1; wR2	0.0577; 0.1444
Goodness of Fit Indicator	1.058
No. Observations (I> $2.00\sigma(I)$)	4752
Residuals (refined on F): R1; wR2	0.0502; 0.1374
Max Shift/Error in Final Cycle	0.00
Maximum peak in Final Diff. Map	0.609 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.381 e ⁻ /Å ³

 1 H NMR Spectrum of Australin E (1) recorded at 600 MHz in C₆D₆

 ^{13}C NMR Spectrum of Australin E (1) recorded at 150 MHz in C_6D_6

 1 H NMR Spectrum of Australin F (2) recorded at 600 MHz in C₆D₆

 ^{13}C NMR Spectrum of Australin F (2) recorded at 150 MHz in C_6D_6

 1 H NMR Spectrum of Australin G (3) recorded at 600 MHz in C₆D₆

 ^{13}C NMR Spectrum of Australin G (3) recorded at 150 MHz in C_6D_6

