Wood Protection Properties of Quaternary Ammonium Arylspiroborate Esters Derived from Naphthalene 2,3-diol, 2,2’-Biphenol and 3-Hydroxy-2-naphthoic acid

A CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, VIC 3169, Australia.
B CSIRO Molecular and Health Technologies, Private Bag 10, Clayton South VIC 3169, Australia.
C School of Chemistry, Cardiff University, Cardiff CF 10 3AT, UK.
D Centre for Green Chemistry, Monash University, Melbourne VIC 3800, Australia.
E Present address: Arch Wood Protection (Aust) Pty Ltd, Unit 3, Aerolink Business Park, 85-91 Keilor Park Drive, Tullamarine VIC 3043, Australia.
F Present address: Biota Holdings Ltd, 10/585 Blackburn Rd, Notting Hill VIC 3168, Australia.
G Corresponding author. Email: peter.duggan@csiro.au

- ACCESSORY PUBLICATION -

Geometry optimisations used for logP oct calculations.
Following methods used previously, the AM1 semi-empirical method, as implemented within the HyperChem Pro v7 package, was used to optimize all molecular geometries. This method was tested for its ability to reproduce the X-ray structure of NBu₄[B(bip)₂] (5). This method satisfactorily reproduced the experimentally observed tetrahedral spiroborate structure, as shown below (X-ray structure shown in green, AM1 in red). Table S1 gives selected geometrical parameters.

![Diagram showing the AM1 and X-ray structures of NBu₄[B(bip)₂] (5).]

Table S1 Comparison of geometrical details for 5

<table>
<thead>
<tr>
<th></th>
<th>X-ray</th>
<th>AM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-O</td>
<td>1.465 – 1.475</td>
<td>1.444 – 1.478</td>
</tr>
<tr>
<td>C-O</td>
<td>1.366 – 1.373</td>
<td>1.361 – 1.370</td>
</tr>
<tr>
<td>B-N</td>
<td>5.03</td>
<td>4.78</td>
</tr>
<tr>
<td>Biphenyl dihedral</td>
<td>40.47, 47.5</td>
<td>36.7, 38.8</td>
</tr>
</tbody>
</table>