10.1071/CH10173_AC

© CSIRO 2010
Australian Journal of Chemistry, 2010, 63(10), 1448-1452

Accessory Publication

Complexation of $\mathbf{Z n}^{2+}$ by the fluorophore 2-((E)-2-phenyl)ethenyl-8-($\mathrm{N}-4-$ methylbenzenesulfonyl)aminoquinol-6-yloxyacetic acid: A preparative, potentiometric, Uv-visible and fluorescence study.

Hilary C. Coleman, Bruce L. May and Stephen F. Lincoln*
School of Chemistry and Physics, University of Adelaide, Adelaide 5005, Australia

Fig. A1. Titration of a $\mathrm{mol} \mathrm{dm}^{-3}$ solution of $\mathrm{H}_{3} \mathbf{3}^{+}$with a $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ solution at 298.2 K. Both solutions are in $25 \% \mathrm{v} / \mathrm{v}$ aqueous ethanol $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ in NaClO_{4}. Experimental data and the best fit of an algorithm for the variation of pH with the progressive deprotonation of $\mathrm{H}_{3} \mathbf{3}^{+}$to form $\mathbf{3}^{2-}$ are shown in black and red, respectively.

Fig. A2. Variation of $\%$ speciation of (a) $\mathrm{H}_{3} 3^{+}$, (b) $\mathrm{H}_{2} \mathbf{3}$, (c) H^{-}and (d) 3^{2-} with pH in $25 \% \mathrm{v} / \mathrm{v}$ aqueous ethanol $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ in NaClO_{4} at 298.2 K where $100 \%=$ $\left[\mathrm{H}_{\mathrm{n}} \mathrm{J}^{(\mathrm{n}-2)+}\right]_{\text {total }}$.

Fig. A3. Observed increase in absorbance at 313 nm (black) with increase in $\left[\mathrm{Zn}^{2+}\right]_{\text {total }}$ at pH 6.6 in $25 \% \mathrm{v} / \mathrm{v}$ aqueous ethanol $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ in NaClO_{4} buffered at pH 6.6 (1.0 $\times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaPIPES}$) at 298.2 K and the best fit of an algorithm for the absorbance variation over the range $270-450 \mathrm{~nm}$ expected for equilibria 1 and 2 (red).

Fig. A4. Observed increase in relative fluorescence at 534 nm (black) with increase in $\left[\mathrm{Zn}^{2+}\right]_{\text {total }}$ at pH 6.6 in $25 \% \mathrm{v} / \mathrm{v}$ aqueous ethanol $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ in NaClO_{4} buffered at pH $6.6\left(1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaPIPES}\right)$ at 298.2 K and the best fit of an algorithm for the absorbance variation expected for equilibria 1 and 2 (red).

Fig. A5. Variation of (a) $\left[\mathrm{H}^{-}\right]$, (b) $\left[\mathrm{Zn}(3)_{2}{ }^{2-}\right]$ (NB the concentration of 3^{2-} contained in $\left[\mathrm{Zn}(\mathbf{3})_{2}{ }^{2-}\right]$ is twice this complexes concentration) and (c) $[\mathrm{Zn}(\mathbf{3})]$ for a solution initially $5.56 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ in H^{-}with increasing $\left[\mathrm{Zn}^{2+}\right]_{\text {total }}$ in $25 \% \mathrm{v} / \mathrm{v}$ aqueous ethanol 0.10 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in NaClO_{4} buffered at pH $6.6\left(1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaPIPES}\right)$ at 298.2 K .

