10.1071/CH10173_AC

© CSIRO 2010

Australian Journal of Chemistry, 2010, 63(10), 1448-1452

Accessory Publication

Complexation of Zn²⁺ by the fluorophore 2-((*E*)-2-phenyl)ethenyl-8-(*N*-4-methylbenzenesulfonyl)aminoquinol-6-yloxyacetic acid: A preparative, potentiometric, Uv-visible and fluorescence study.

Hilary C. Coleman, Bruce L. May and Stephen F. Lincoln*
School of Chemistry and Physics, University of Adelaide, Adelaide 5005, Australia

Fig. A1. Titration of a mol dm⁻³ solution of H_33^+ with a mol dm⁻³ NaOH solution at 298.2 K. Both solutions are in 25% v/v aqueous ethanol 0.10 mol dm⁻³ in NaClO₄. Experimental data and the best fit of an algorithm for the variation of pH with the progressive deprotonation of H_33^+ to form 3^{2-} are shown in black and red, respectively.

Fig. A2. Variation of % speciation of (a) $H_3\mathbf{3}^+$, (b) $H_2\mathbf{3}$, (c) $H\mathbf{3}^-$ and (d) $\mathbf{3}^{2^-}$ with pH in 25% v/v aqueous ethanol 0.10 mol dm⁻³ in NaClO₄ at 298.2 K where 100% = $[H_n\mathbf{3}^{(n-2)+}]_{total}$.

Fig. A3. Observed increase in absorbance at 313 nm (black) with increase in $[Zn^{2+}]_{total}$ at pH 6.6 in 25% v/v aqueous ethanol 0.10 mol dm⁻³ in NaClO₄ buffered at pH 6.6 (1.0 \times 10⁻³ mol dm⁻³ NaPIPES) at 298.2 K and the best fit of an algorithm for the absorbance variation over the range 270 – 450 nm expected for equilibria 1 and 2 (red).

Fig. A4. Observed increase in relative fluorescence at 534 nm (black) with increase in $[Zn^{2+}]_{total}$ at pH 6.6 in 25% v/v aqueous ethanol 0.10 mol dm⁻³ in NaClO₄ buffered at pH 6.6 (1.0 × 10⁻³ mol dm⁻³ NaPIPES) at 298.2 K and the best fit of an algorithm for the absorbance variation expected for equilibria 1 and 2 (red).

Fig. A5. Variation of (a) [H3⁻], (b) [Zn(3)₂²⁻] (NB the concentration of 3^{2-} contained in [Zn(3)₂²⁻] is twice this complexes concentration) and (c) [Zn(3)] for a solution initially 5.56 x 10⁻⁶ mol dm⁻³ in H3⁻ with increasing [Zn²⁺]_{total} in 25% v/v aqueous ethanol 0.10 mol dm⁻³ in NaClO₄ buffered at pH 6.6 (1.0 × 10⁻³ mol dm⁻³ NaPIPES) at 298.2 K.