10.1071/CH10276_AC © CSIRO 2011 Australian Journal of Chemistry, 2011, 64(1), 68–76

Supporting Information

Oxalate bridged copper pyrazole complex templated Anderson-Evans cluster based solids

Katikaneani Pavani, Monika Singh and Arunachalam Ramanan*

Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India

Fax: +91 11 26581102; Tel: +91 11 26591507 E-mail: aramanan@chemistry.iitd.ac.in

Table S1. Retrosynthetic analysis of Anderson-Evans type chromium molybdate cluster based solids reported in the literature along with tectons involved in each supramolecular reaction.

S.No.	Compound	Cell parameters	Experimental conditions	Structural description	Tectons	Reference
1.	(BEDT- TTF) ₄ [H ₆ CrMo ₆ O ₂₄]·2H ₂ O [BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene]	Triclinic <i>P</i> -1 a / Å = 5.9545(2) b / Å = 16.3767(6) c / Å = 21.8643(6) $a /^{\circ} = 110.829(2)$ $\beta /^{\circ} = 91.262(2)$ $\gamma /^{\circ} = 98.129(1)$ $V / \text{Å}^3 = 1966.70(11)$ Z = 1	Galvanostatic oxidation using BEDT-TTF (10 mg), platinum wire electrodes and a constant current intensity of 1.2 mA. Solution of Na ₃ [H ₆ CrMo ₆ O ₂₄].nH ₂ O (A=Bu ₄ N ⁺ or Ph ₄ P ⁺)(100mg) in CH ₂ Cl ₂ (20ml) was used as electrolyte.	Both the cluster and the organic molecule are discrete ions.	$\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	J. Cluster Sci. 2003, 14, 193.

2.	[{Na ₃ (H ₂ O) ₁₁ }{H ₆ CrMo ₆ O ₂₄ }] .2H ₂ O	Triclinic P-1 a / Å = 10.968 (2) b / Å = 11.686 (2) c / Å = 14.895 (3) $a /^{\circ} = 72.10 (3)$ $\beta /^{\circ} = 70.99 (3)$ $\gamma /^{\circ} = 66.90 (3)$ Z = 2	Na ₃ [H ₆ CrMo ₆ O ₂₄].nH ₂ O (3.8 g in 10 ml H ₂ O) to which a methanol-water (20 ml) solution in a volume ratio of 5:3 was added. The pH of the resulting solution was adjusted to 3.5 with acetic acid. The resulting solution was filtered and slowly evaporated at ambient temperature.	The cluster is covalently linked to trimeric sodium hydrate into 1D chain.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	Acta Cryst. E. 2006, 62, i190.
3.	[Na ₃ {H ₆ CrMo ₆ O ₂₄ }].8H ₂ O	Triclinic P-1 a / Å = 10.9080 (4) b / Å = 10.9807(4) c / Å = 6.4679 (2) $a /^{\circ} = 107.594(2)$ $\beta /^{\circ} = 84.438(2)$ $\gamma /^{\circ} = 112.465(3)$ Z = 1	$\begin{array}{r} Na_2 MoO_4.2 H_2 O (145 g \ in \\ 300 ml H_2 O) / \\ Cr(NO_3)_3.9 H_2 O(40 g \ in \ 40 \\ ml \ H_2 O). \ pH \ was \ adjusted \\ to \ \textbf{4.5} \ with \ concentrated \\ HNO_3. \end{array}$	The cluster is covalently linked by monomeric sodium hydrate and sodium hydrate chains into 3D framework.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	Inorg. Chem. 1970 , 9, 2228.
4.	[Na ₃ {H ₆ CrMo ₆ O ₂₄ }].6DMSO	Monoclinic C2/c a / Å = 25.37(2) b / Å = 14.632(2) c / Å = 15.455(6) $\beta /^{\circ} = 123.17(4)$ $V / Å^{3} = 4803(4)$ Z = 4	A vigorous stirring Of Na ₃ [Cr(OH) ₆ Mo ₆ O ₁₈]. 8H ₂ O in DMSO at 25-30 °C during several days.	The cluster is covalently linked by sodium complex into 3D framework.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & M_0 & 0 & M_0 & 0 & 0 \\ 0 & M_0 & 0 & 0 & 0 & 0 \\ 0 & M_0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & $	Inorg. Chem. 1998, 37, 1499.

5.	$(C_{6}H_{5}NO_{2})_{2}[\{Na_{3}(C_{6}H_{5}NO_{2})_{2}\}\{H_{6}CrMo_{6}O_{24}\}]$ [$(C_{6}H_{5}NO_{2}) = pyridine-3-carboxylic acid]$	Monoclinic C2/c a / Å = 22.045(4) b / Å = 9.4640(19) c / Å = 21.088(4) $\beta/^{\circ} = 98.56(3)$ $V / Å^{3} = 4350.9(15)$ Z = 4	Pyridine-3-carboxylic acid(2 mmol)/NaClO ₄ .H ₂ O (1mmol)/Na ₃ [CrMo ₆ H ₆ O ₂₄].8H ₂ O(1 mmol) in 50 ml H ₂ O at 80°C.	The cluster is covalently linked by sodium and its complex into 2D sheet.		J. Mol. Struct. 2005, 751, 184.
6.	${Fe(C_5H_5)_2}_2$ [Na{H ₆ CrMo ₆ O ₂₄].3H ₂ O [C ₅ H ₅ = cyclopentadienyl]	Monoclinic P21/n a / Å = 10.015(2) b / Å = 7.722(6) c / Å = 25.137(5) $\beta / \circ = 90.626(9)$ $V / Å^3 = 1944(2)$ Z = 2	Crystal growth was performed in a glass H-cell where the two compartments are separated by a fine porosity glass frit. $[Fe(C_5H_5)_2]BF_4$ (1mmol) is added to one compartment, and a concentrated solution of Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O (0.33mmol) is added to the other one.	The cluster is covalently linked by sodium hydrate into 1D chain and iron complex occurs as discrete.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	Inorg. Chem. 1998 , 37, 1499.
7.	${Fe(C_5Me_5)_2}_3[H_6CrMo_6O_{24}].$ 20H ₂ O [C ₅ Me ₅ = pentamethyl cyclopentadienyl]	Triclinic P-1 a / Å = 12.489(3) b / Å = 14.113(3) c / Å = 15.662(4) $a /^{\circ} = 101.55(2)$ $\beta /^{\circ} = 105.82(2)$ $\gamma /^{\circ} = 110.23(2)$ $V / Å^{3} = 2355.7(9)$ Z = 1	$[Fe(C_5Me_5)_2]BF_4(1mmol in 20mL)/Na_3[H_6CrMo_6O_{24}]. \\ 8H_2O (0.33mmol) in a small amount of 1/5 \\ H_2O/CH_3CN.$	Both the cluster and the iron complex are discrete.	$H^{-O} H$	Inorg. Chem. 1998 , 37, 1499.

8.	$[{Cu(Gly)_2} {Na(H_2O)_4(H_6Cr M_0G_{24})}].9.5H_2O (Gly = glycine)$	Triclinic P-1 a / Å = 10.684(2) b / Å = 10.960(2) c / Å = 10.979(2) $a /^{\circ} = 60.42(3)$ $\beta /^{\circ} = 63.10(3)$ $\gamma /^{\circ} = 78.87(3)$ $V / \text{Å}^3 = 996.31(30)$ Z = 1	Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O (1.35 mmol)/ glycine (2.70 mmol)/ CuCl ₂ .2H ₂ O (1.35 mmol) in water (20 ml). The mixture was refluxed for 1 h at 80°C after the pH value of the solution was adjusted to 4.50 with diluted NaOH solution.	1D chain formed between sodium hydrate and the cluster is bridged by copper complex.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & M & 0 & 0 \\ 0 & M & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	Inorg. Chem. Commun. 2004 , 7, 521.
9.	[Na ₃ {Cu(Gly) ₂ }{H ₆ CrMo ₆ O ₂₄ }].13H ₂ O (Gly = Glycine)	Triclinic P-1 $a / \text{\AA} = 10.577(2)$ $b / \text{\AA} = 10.852(2)$ $c / \text{\AA} = 10.955(2)$ $a /^\circ = 60.31(3)$ $\beta /^\circ = 63.32(3)$ $\gamma /^\circ = 78.95(3)$ Z = 1	$\begin{array}{l} Glycine/Cu(CH_3COO)_2.H_2\\ O/ NaClO_4.H_2O/\\ Na_3[H_6CrMO_6O_{24}].8H_2O.\\ The mixture was refluxed\\ for 2 h at 80^\circ C. The\\ filtrate was kept for 1\\ month at ambient\\ conditions. \end{array}$	1D chain formed between the cluster and copper complex is bridged by trimeric sodium hydrate.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	J. Cluster Sci. 2008 19, 367.
10	$[{Cu(C_6H_8N_3O_2)(C_6H_9N_3O_2)(H_2O)_2} {Na(H_2O)}_2 {H_6CrMo_6 O_{24}}].3H_2O (C_6H_9N_3O_2 = Histidine)$	Triclinic P1 a / Å = 10.2053(16) b / Å = 11.2092(18) c / Å = 11.8049(19) $a /^{\circ} = 109.583(2)$ $\beta /^{\circ} = 95.353(2)$ $\gamma /^{\circ} = 109.081(2)$ $V / \text{Å}^3 = 1170.8(3)$ Z = 1	CrCl ₃ .6H ₂ O (0.8 mmol)/ Na ₂ MoO ₄ .2H ₂ O (1.5 mmol)/Cu(CH ₃ COO) ₂ .2H ₂ O (0.5 mmol)/ Histidine (1 mmol) at room temperature. The final pH was adjusted to about 2.6 with conc. HCl. The filtrate was kept for 3 days.	The cluster is covalently linked by sodium hydrate connected to copper complex.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Mol. Struct. 2009, 931, 50.

11. $[{Cu(C_6NO_2H_4)(phen)(H_2O)}_2 {H_6CrMo_6O_{24}}](H_3O^+).5H_2O (C_6NO_2H_4 = pyridine-4-carboxylic acid)$	Triclinic P-1 a / Å = 9.9418(9) b / Å = 9.9459(9) c / Å = 14.2493(12) a / ° = 81.4570(10) $\beta / ° = 83.0140(10)$ $\gamma / ° = 77.2240(10)$ $V / Å^3 = 1353.1(2)$ Z = 1	pyridine-4-carboxylic acid (0.27 mmol)/ phen (0.60 mmol)/ Cu(NO ₃) ₂ .3H ₂ O (0.60 mmol) in H ₂ O- methanol. Na ₂ MoO ₄ .2H ₂ O (3.72mmol)/ Cr(NO ₃) ₃ .6H ₂ O (1.50 mmol) in H ₂ O. The final pH of the solution was adjusted to 2.6 with the	The cluster is derivatized by copper complex.	$H^{\mathcal{O}}H$	J. Mol. Struct. 2009, 920, 284.
	m · · · ·	dilute HNO ₃ solution (3 M). The filtrate was kept at room temperature.		9.	
12. $[{Cu(2,2'-bpy)(H_2O)_3}_2 \\ {H_6CrMo_6O_{24}}] [{Cu(2,2'-bpy)(H_2O)Cl}{Cu(2,2'-bpy)(H_2O)(NO_3)} \\ {H_6CrMo_6O_{24}}].18H_2O \\ (2,2'-bpy = 2,2'-bipyridine)$	Triclinic P-1 a / Å = 13.252(3) b / Å = 13.791(3) c / Å = 14.277(3) $a /^{\circ} = 90.71(3)$ $\beta /^{\circ} = 108.34(3)$ $\gamma /^{\circ} = 90.40(3)$ $V / \text{Å}^3 = 2476.3(9)$ Z = 1	Na ₂ MoO ₄ .2H ₂ O (3.72mmol) in 30mL of water and the pH of the solution was adjusted with the dilute HNO ₃ (3M) to approx. 4.5, then a solution of CrCl ₃ .6H ₂ O (1.12mmol) in water (10mL) was added. CuCl ₂ .2H ₂ O (0.80mmol)/ 2,2'- bipyridine(0.80 mmol) in H ₂ O - methanol solution, and then it was added to the upper solution with stirring. The pH of the final solution was adjusted to 2.6 with the dilute HNO ₃ (3M). The filtrate was kept for five days at ambient conditions.	The cluster is derivatized by copper bipyridyl complex.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Solid State Chem. 2009, 182, 49.

13.	$[\{(Cu(phen)(H_2O)_2)_2(H_6CrMo_6O_{24})\}\{(Cu(phen)(H_2O)\\Cl(H_6CrMo_6O_{24}))_2\}].5H_2O\\[phen = 1,10-phenanthroline]$	Triclinic P-1 a / Å = 10.8867(5) b / Å = 15.2504(7) c / Å = 15.7022(7) $a /^{\circ} = 64.9850(10)$ $\beta /^{\circ} = 83.0430(10)$ $\gamma /^{\circ} = 71.1570(10)$ $V / \text{Å}^{3} = 2235.47(18)$ Z = 1	CrCl ₃ .6H ₂ O (3.75 mmol)/ Na ₂ MoO ₄ .2H ₂ O (14.46 mmol)/10 ml acetic acid/ 1,10-Phenanthroline (1mmol) /Cu(NO ₃) ₂ .3H ₂ O (2.9 mmol) in 200 ml H ₂ O at 90°C. pH was adjusted to 2.6 with conc.HCl.	The cluster is derivatized by	$\begin{bmatrix} \mathbf{a}_{1}^{a} \mathbf{b}_{1}^{a} \mathbf{c}_{1}^{a} \mathbf{c} \mathbf{c}_{1}^{a} \mathbf{c}_{1}^{a} \mathbf{c}_{1}^{a} \mathbf{c}_$	Inorg. Chem. 2005, 44, 8846.
				two different copper phenanthroline complex.		
14.	[{Cu(phen)} ₂ {H ₅ CrMo ₆ O ₂₄ }] (phen = 1,10-phenanthroline)	Monoclinic P2(1)/n a / Å = 5.66710(10) b / Å = 21.3723(5) c / Å = 14.7092(3) $\beta / \circ = 98.10(10)$ $V / Å^3 = 1763.79(6)$ Z = 2	$\label{eq:hardware} \begin{split} &Na_2MoO_4.2H_2O~(1.86\\ mmol)/~CuCl_2.2H_2O(0.3\\ mmol)/~CrCl_3.6H_2O(0.75\\ mmol)/~phen(0.2~mmol)/\\ &H_2O(10~mL)~at~165~^{\circ}C~for\\ &120~h.~The~solution~was\\ &slowly~cooled~to~room-temperature~at~a~rate~of\\ &10~^{\circ}Ch^{-1}. \end{split}$	The cluster is covalently linked by copper phenanthroline complex into 1D chain.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Mol. Struct. 2010, 967, 15.
15.	$[Cu(2,2'-bpy)(H_2O)_2Cl][{Cu(2,2'-bpy)(H_2O)_2}]{H_6CrMo_6O_{24}}].$ $4H_2O$ $(2,2'-bpy = 2,2'-bipyridine)$	Triclinic P-1 a / Å = 11.244(2) b / Å = 14.566(3) c / Å = 15.330(3) $a /^{\circ} = 112.21(3)$ $\beta /^{\circ} = 106.65(3)$ $\gamma /^{\circ} = 93.90(3)$ $V / Å^{3} = 2182.6(8)$ Z = 2	Na ₂ MoO ₄ .2H ₂ O (3.72mmol) in 30mL of water and the pH of the solution was adjusted with the dilute HCl(3M) to approx. 4.5, then a solution of CrCl ₃ .6H ₂ O(1.12mmol) in water (10mL) was added. CuCl ₂ .2H ₂ O (0.80mmol)/ 2,2'- bipyridine(0.80 mmol) in H ₂ O - methanol solution, and then it was added to the upper solution with stirring. The pH of the	The cluster is covalently linked by one type of copper bipyridyl complex into 1D chains. A	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & M_0 & 0 & 0 & 0 \\ 0 & M_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Solid State Chem. 2009, 182, 49.

			final solution was adjusted to 2.6 with the dilute HCl (3M). The filtrate was kept for five days at ambient conditions.	different copper bipyridyl complex occurs as discrete cation.		
16	$(H_{3}O)[\{Cu(2,2'-bpy)(H_{2}O)_{2}\}_{2} \\ \{Cu(2,2'-bpy)(H_{2}O)\}_{2} \\ \{H_{6}CrMo_{6}O_{24}\}]_{3}.36H_{2}O \\ (2,2'-bpy = 2,2'-bipyridine) \end{cases}$	Triclinic <i>P</i> -1 a / Å = 14.1896(13) b / Å = 15.6768(14) c / Å = 16.2269(15) $a /^{\circ} = 65.4780(10)$ $\beta /^{\circ} = 70.5120(10)$ $\gamma /^{\circ} = 80.5860(10)$ $V / Å^3 = 3094.6(5)$ Z = 1	Na ₂ MoO ₄ .2H ₂ O (3.72mmol) in 30mL of water and the pH of the solution was adjusted with the dilute HNO ₃ (3M) to approx. 4.5, then a solution of $Cr(NO_3)_3.9H_2O$ (1.12mmol) in water (10mL) was added. $Cu(NO_3)_2.3H_2O(0.8mmol)$ /2,2'-bipyridine(0.8mmol) in H ₂ O - methanol solution, and then it was added to the upper solution with stirring. The pH of the final solution was adjusted to 2.6 with the dilute HNO ₃ (3M). The filtrate was kept for five days at ambient conditions.	The cluster is covalently linked by copper bipyridyl complex into 2D sheet.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Solid State Chem. 2009, 182, 49.
17	$[{Cu2(bpy)2(\mu-ox)}{H7CrMo6O24}](bpy = 2,2'-bipyridine)(ox = oxalic acid)$	Orthorhombic <i>Pna2</i> a / Å = 14.2385(7) b / Å = 26.3312(13) c / Å = 10.2825(5) $V / Å^3 = 3855.1(3)$ Z = 4	$\begin{array}{c} CuCl_{2}.2H_{2}O(0.6mmol)/\\ 2,2'-bpy(0.6mmol)/ \ oxalic\\ acid(0.3mmol) \ in \ 10 \ ml\\ H_{2}O \ and \ 10ml \ methanol/\\ Na_{2}MoO_{4}.2H_{2}O\\ (3.72mmol)/\\ CrCl_{3}.6H_{2}O(1.12mmol) \ in \ 30ml \ H_{2}O/3M \ dil \ HCl. \end{array}$	The cluster is covalently linked by dinuclear copper bipyridyl complex bridged by oxalate units forming 1D chain.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	Inorg. Chem. 2007 , 46, 3541.

18.	$\begin{array}{l} (C_4NH_7O_4)[\{(Zn \ (L-\\ C_4H_8N_2O_3)_2)(Na_2(H_2O)_9)\}_2\{H_6 \\ CrMo_6O_{24}\}_2].7H_2O \\ [(L- C_4H_8N_2O_3) = L-\\ asparagine] \end{array}$	Orthorhombic $P 2_1 2_1 2$ a / Å = 20.405(4) b / Å = 21.821(4) c / Å = 10.917(2) $V / Å^3 = 4860.88(17)$ Z = 4	L-asparagine $(2 \text{ mmol})/$ Zn(OAc) ₂ .H ₂ O (1 mmol)/ Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O (0.5 mmol) in 50ml H ₂ O at 80°C. pH was adjusted to 4.0.	The cluster is covalently linked by zinc complex in 1D chain.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$	<i>Inorg. Chem.</i> <i>Commun.</i> 2008 , <i>11</i> , 914.
19.	$\begin{array}{l} (C_4NH_7O_4)[\{(Zn(D-C_4H_8N_2O_3)_2)(Na_2(H_2O)_9)\}_2\{H_6\\ CrMo_6O_{24}\}_2].7H_2O\\ [(D-C_4H_8N_2O_3)=D-asparagine] \end{array}$	Orthorhombic $P 2_1 2_1 2$ a / Å = 20.454(4) b / Å = 21.822(4) c / Å = 10.918(2) $V / \text{Å}^3 = 4873.22(17)$ Z = 4	D-asparagine $(2 \text{ mmol})/$ Zn(OAc) ₂ .H ₂ O (1 mmol)/ Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O (0.5 mmol) in 50ml H ₂ O at 80°C. pH was adjusted to 4.0.	The cluster is covalently linked by zinc complex in 1D chain.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$	Inorg. Chem. Commun. 2008 , 11, 914.
20.	{RuNO(NH ₃) ₄ OH} ₃ [{H ₆ CrMo ₆ O ₂₄ } ₂].15H ₂ O	Triclinic P-1 a / Å = 10.5858(2) b / Å = 11.0407(2) c / Å = 16.8077(4) $\alpha /^{\circ} = 76.919(1)$ $\beta /^{\circ} = 73.774(1)$ $\gamma /^{\circ} = 84.090(1)$ $V / \text{Å}^3 = 1835.55(6)$ Z = 1	Diffusing 10 ml Na ₃ [H ₆ CrMo ₆ O ₂₄]. 8H ₂ O (0.3 mmol) and 5 ml [RuNO(NH ₃) ₄ OH]Cl ₂ (0.45 mmol) in H ₂ O for a month.	Both the cluster and ruthenium complex are discrete.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Cluster Sci. 2006, 17, 303.
21.	[{Ag ₃ (H ₂ O) ₄ }{H ₆ CrMo ₆ O ₂₄ }]. 3H ₂ O	Triclinic P-1 a / Å = 6.2052(12) b / Å = 14.185(3) c / Å = 15.077(3) $a /^{\circ} = 90.68(3)$ $\beta /^{\circ} = 90.08(3)$ $\gamma /^{\circ} = 93.82(3)$ $V / \text{Å}^3 = 1324.0(5)$ Z = 2	AgNO ₃ (1 mmol)/aspartic acid (1 mmol)/ Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O(1 mmol) in 40 ml H ₂ O at 80 °C. Diffraction-quality crystals were obtained by recrystallization from 20 ml of hot water.	The cluster is covalently linked into a 3D framework by silver hydrate.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$	<i>Cryst. Growth Des.</i> 2006 , <i>6</i> , 1107.

22.	$[\{(H_2O)_2(HC_6H_4NO_2)Cd(C_6H_5 NO_2)\}_2\{H_6CrMo_6O_{24}\}].9H_2O (C_6H_5NO_2 = pyridine-3-carboxylic acid)$	Triclinic P-1 a / Å = 7.9922(16) b / Å = 13.861(3) c / Å = 14.357(3) $a /^{\circ} = 74.63(3)$ $\beta /^{\circ} = 84.59(3)$ $\gamma /^{\circ} = 82.96(3)$ $V / Å^{3} = 1518.8(5)$ Z = 1	Pyridine-3-carboxylic acid (1 mmol)/ Cd(NO ₃) ₂ .2H ₂ O(1 mmol)/ Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O(0. 5 mmol) were refluxed for 2 h at 80°C, and then filtered. The filtrate was kept for 4 weeks under ambient conditions.	The cluster occurs as discrete anion for the cationic 1D coordination polymeric chain made of cadmium pyridine-3- carboxylate.		J. Mol. Struct. 2009, 933, 86.
23.	[{Cd ₃ (H ₂ O) ₁₄ }{H ₆ CrMo ₆ O ₂₄ } ₂] (C ₆ H ₅ NO ₂) ₄ (C ₆ H ₅ NO ₂ = pyridine-4- carboxylic acid)	Monoclinic Pc a / Å = 12.639(3) b / Å = 10.761(2) c / Å = 13.777(3) $\beta /^{\circ} = 104.29(3)$ $V / \text{Å}^{3} = 1815.8(6)$ Z = 1	Pyridine-4-carboxylic acid (1 mmol)/ Cd(NO ₃) ₂ .2H ₂ O (1 mmol)/ Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O (0.5 mmol) were refluxed for 2 h at 80°C, and then filtered. The filtrate was kept for 3 weeks under ambient conditions.	The cluster is covalently linked by cadmium hydrate into 1D chain with organic as counter cation.	$\begin{bmatrix} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	J. Mol. Struct. 2009, 933, 86.
24.	$(C_5H_9NO_2)_2[La(H_2O)_7{H_6CrM} o_6O_{24}].11H_2O$ $(C_5H_9NO_2 = Proline)$	Monoclinic C2/c a / Å = 26.257(5) b / Å = 11.526(2) c / Å = 19.890(4) $\beta /^{\circ} = 127.44(3)$ $V / \text{Å}^{3} = 4779.4(17)$ Z = 4	Proline $(1.40 \text{ mmol})/$ La(NO ₃) ₃ .7H ₂ O(1.40 mmol)/ Na ₃ (H ₆ CrMo ₆ O ₂₄).8H ₂ O (1.35 mmol) at 80°C for 1 h. The filtrate was kept for two weeks at ambient conditions.	The cluster is covalently linked by lanthanum hydrate in 2D sheet.	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & M0 & 0 & M0 & 0 \\ 0 & M0 & 0 & 0 & 0 \\ 0 & M0 & $	Inorg. Chem. Commun. 2004 , 7, 356.

25	(C ₆ NO ₂ H ₅) ₂ [La(H ₂ O) ₅ {H ₆ CrM o ₆ O ₂₄ }]. 0.5H ₂ O [(C ₆ NO ₂ H ₅) = pyridine-3- carboxylic acid]	Orthorhombic Pmn21 a / Å = 15.080(3) b / Å = 11.630(2) c / Å = 23.096(5) $V / Å^3 = 4050.6(14)$ Z = 4	Pyridine-3-carboxylic acid(0.5 mmol)/ La(NO ₃) ₃ .6H ₂ O(0.5 mmol)/ Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O(0. 5 mmol) in 20 ml H ₂ O at 80 °C.	The cluster is covalently linked by lanthanum hydrate in 2D sheets	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	Eur. J. Inorg. Chem. 2005, 854.
26	$(C_{6}H_{5}NO_{2})[\{La(C_{6}H_{5}NO_{2}) \\ (H_{2}O)_{7}\}\{H_{6}CrMo_{6}O_{24}\}].$ 10.5H ₂ O $[(C_{6}H_{5}NO_{2}) = Pyridine-4-carboxylic acid]$	Triclinic <i>P</i> -1 a / Å = 11.071(2) b / Å = 13.252(3) c / Å = 17.318(4) $a /^{\circ} = 91.73(3)$ $\beta /^{\circ} = 93.94(3)$ $\gamma /^{\circ} = 94.46(3)$ $V / Å^{3} = 2525.5(9)$ Z = 2	Pyridine-4-carboxylic acid(2mmol)/LaCl ₃ .7H ₂ O(1mmol)/Na ₃ [H ₆ CrMo ₆ O ₂₄] . 8H ₂ O(1 mmol) in 30 ml H ₂ O at 80°C.	Both the cluster and lanthanum		J. Mol. Struct. 2005 , 743, 117.
27	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Triclinic P-1 a / Å = 9.2152(18) b / Å = 12.140(2) c / Å = 13.707(3) $a /^{\circ} = 70.99(3)$ $\beta /^{\circ} = 75.04(3)$ $\gamma /^{\circ} = 72.22(3)$ $V / \text{Å}^3 = 1359.0(5)$ Z = 1	H ₂ dipic (1 mmol)/ Ce(NO ₃) ₃ .6H ₂ O (1 mmol)/ Na ₃ [H ₆ CrMO ₆ O ₂₄].8H ₂ O (1 mmol) in 60 ml of water at 50°C for 1 h. The filtrate was kept for one month under ambient conditions.	complex are discrete.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$	<i>Trans. Metal Chem.</i> 2006 , <i>31</i> , 770.

28	$[C_6NO_2H_5)_2[Ce(H_2O)_5{H_6Cr MO_6O_{24}}] \cdot 0.5H_2O \\ [C_6NO_2H_5 = pyridine-3-carboxylic acid]$	Orthorhombic Pmn21 a / Å = 15.0314(9) b / Å = 11.6090(7) c / Å = 23.0481(14) $V / Å^3 = 4021.9(4)$ Z = 4	$\begin{array}{c} Pyridine-3-carboxylic\\ acid(0.5 mmol)/\\ Ce(NO_3)_{3.}6H_2O(0.5 mmol)/\\ Na_3[H_6CrMo_6O_{24}].8H_2O(0.5 mmol) in 20 ml H_2O at 80 ^C.\\ \end{array}$	The cluster is covalently linked by cerium hydrate into 2D sheets and organic molecule	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	<i>Eur. J. Inorg. Chem.</i> 2005 , 854.
29	[Ce(H ₂ O) ₇ {H ₆ CrMo ₆ O ₂₄ }]. 4H ₂ O	Orthorhombic Pca2 a/Å = 11.8614(3) b/Å = 11.0038(3) c/Å = 22.6117(6) $V/Å^3 = 2951.29(13)$ Z = 4	Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O (0.1mmol)/Ce(NO ₃) ₃ ·6H ₂ O (0.2mmol) in 25ml H ₂ O at 60°C.	occur as counter cation.	$\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Z. Anorg. Allg. Chem. 2008 , 758.
30	$[\{Nd(C_2H_5NO_2)_2(H_2O)_5\}\{H_6C rMo_6O_{24}\}].10H_2O [(C_2H_5NO_2) = Glycine]$	Monoclinic C2/c a / Å = 33.202(7) b / Å = 10.733(2) c / Å = 11.910(2) $\beta/^{\circ} = 106.38(3)$ $V / Å^{3} = 4071.9(14)$ Z = 4	Glycine(2mmol)/Nd(ClO ₄) ₃ (1mmol)/Na ₃ [H ₆ CrMo ₆ O ₂ ₄]. 8H ₂ O(1 mmol) at room temperature.	Both the cluster and neodymium complex are discrete.		J. Mol. Struct. 2005, 743, 117.

31.	[Sm(H ₂ O) ₇ {H ₆ CrMo ₆ O ₂₄ }]. 4H ₂ O	Orthorhombic Pca2 a / Å = 11.8289(4) b / Å = 10.9649(4) c / Å = 22.4370(7) $V / Å^3 = 2910.14(17)$ Z = 4	Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O(0. 1mmol)/ Sm(NO ₃) ₃ ·6H ₂ O (0.2mmol) in 25ml H ₂ O at 60°C.	The cluster is covalently linked by samarium hydrate into 1D chains.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	Z. Anorg. Allg. Chem. 2008 , 758.
32.	[Eu(H ₂ O) ₇ {H ₆ CrMo ₆ O ₂₄ }]· 4H ₂ O	Orthorhombic Pca2 a / Å = 11.832(5) b / Å = 10.966(5) c / Å = 22.425(5) $V / \text{Å}^3 = 2909.6(19)$ Z = 4	Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O(0. 1mmol)/ Eu(NO ₃) ₃ ·6H ₂ O (0.2mmol) in 25ml H ₂ O at 60°C.	The cluster is covalently linked by europium hydrate into 1D chains.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$	Z. Anorg. Allg. Chem. 2008 , 758.
33.	$\label{eq:c6} \begin{array}{l} (C_6H_5NO_2)_2[Dy(H_2O)_6\{H_6Cr\\ Mo_6O_{24}\}].4H_2O\\ [(C_6H_5NO_2) = pyridine-4-carboxylic acid] \end{array}$	Monoclinic C2/c a / Å = 18.276(4) b / Å = 12.549(3) c / Å = 17.822(4) $\beta /^{\circ} = 103.90(3)$ $V / Å^{3} = 3967.7(14)$ Z = 4	Pyridine-4-carboxylic acid(2 mmol)/Dy(ClO ₄) ₃ (1 mmol)/Na ₃ [H ₆ CrMo ₆ O ₂₄]. 8H ₂ O(1 mmol) in 50 ml H ₂ O.	The cluster is covalently linked by dysprosium hydrate in 2D sheet.	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	J. Mol. Struct. 2005, 751, 184.

34.	$[{Er_2(H_2O)_{14}(H_6CrMo_6O_{24})}]$	Triclinic	Hexanedioic(0.5mmol)/	26		J. Chem.
	$H_6CrMo_6O_{24}$].14 H_2O	<i>P</i> -1	Er(NO ₃) ₃ .6H ₂ O(0.2mmol)/	×		Crystallogr. 2008,
		$a / \text{\AA} = 11.046 (5)$	Na ₃ [H ₆ CrMo ₆ O ₂₄].8H ₂ O	🖌 _ 🞽		38, 695.
		<i>b</i> / Å = 11.653 (5)	(0.1 mmol) in 25 ml H ₂ O at			
		<i>c</i> / Å = 13.935 (5)	60°C.			
		$\alpha / ^{\circ} = 75.006 (5)$				
		$\beta/^{\circ} = 84.497(5)$			H ² [^] H	
		$\gamma/^{\circ} = 89.515(5)$		*		
		$V/Å^3 = 1724.4(12)$				
		$\mathbf{Z} = 1$		The cluster is discrete as well		
				as derivatized with erbium		
				hydrate.		

Scheme S1. Classification of Anderson-Evans cluster based solids.

1	Bond distance	3	Bond distance
	(Å)		(Å)
O1w O8w	2.710	O1w O2w	2.492
O7w O8w	2.799	O2w O4w	3.062
O6w O8w	3.071	O3w O4w	2.855
O6w O10w	2.879	O3w O5w	3.243
O4w O10w	3.047	O4w O5w	3.173
O4w O9w	2.746	4	
O5w O9w	3.075	O1w O2w	2.885
O5w O7w	2.865	O2w O3w	3.359
O9w O11w	2.761	O3w O4w	3.409
O3w O5w	3.200	O1w O3w	3.171
O3w O9w	3.090	01w 04w	3.173
O2w O3w	2.779	O4w O4w	2.726
O2w O11w	2.722	5	
O11w O12w	2.604	O1w O2w	3.079
		O2w O4w	3.146
		03w 04w	3.092
		01w 04w	3.127
		01w 04w	3.587
		O3w O3w	1.722

Table S2. Bond distances for the water – water interactions in 1 and 3 - 5.

Fig. S1. Three-dimensional framework in **2**. A chain of sodium octahedra bridge Anderson cluster forming 2D sheets in **2**.

Fig. S2. Rietveld refinement plot of blue powder obtained in the absence of methanol matched with 3 and 5. Rwp = 7.23, Rp = 6.41. * corresponds to an unidentified phase.

Fig. S3. Crystallization of $[{Cr_3(O)(CH_3COO)_6(H_2O)_3}_2 {H_3CrMO_6O_{24}}].24H_2O$, **1** from the supramolecular aggregation of three tectons: the two ionic clusters Anderson-Evans and trinuclear chromium along with mediating H₂O molecules; charge compensation is accounted for by protonation of the Anderson cluster.

Fig. S4. Crystallization of $[\{Na\{Na(H_2O)_3\}_2\{H_6CrMo_6O_{24}\}].2H_2O, 2$ is an engineering of the four tectons $\{H_nCrMo_6O_{24}\}, \text{ dimeric } \{Na_2(H_2O)_{10}\}^{2+}, \text{ monomeric } \{Na(H_2O)_6\}^{1+} \text{ and } H_2O \text{ at the molecular level. While monomeric sodium condenses with Anderson cluster in a tridentate mode to form 1D chains, dimeric sodium hydrates aggregate in an extended manner simultaneously bridging Anderson clusters.$

Fig. S5. Crystallization of $[{Cu_2(ox)(pz)_4} {H_7CrMo_6O_{24}}].11H_2O$, **3** occurs from the supramolecular aggregation of the tectons ($\{CrMo_6O_{24}\}$, oxalate bridged $\{Cu(pz)_2(H_2O)_4\}$ complex and mediating H₂O molecules for efficient crystal packing. Directionality of self assembly is obvious in terms of supramolecular interactions forming covalently linked 1D chains and nonbonding in the other direction.

Fig. S6. Crystallization of $[{Cu(pz)_2(H_2O)_2} {Cu_2(ox)(pz)_4} {H_5CrMo_6O_{24}}]$.8H₂O, **4** from the tectons $({CrMo_6O_{24}})$, oxalate bridged copper pyrazole complex and $Cu(pz)_2(H_2O)_4$). Notice the condensation of copper pyrazole complex bridging 1D chains.

Fig. S7. Crystallization of $[{Cu(pz)_3Cl} {Cu_2(ox)(pz)_4} {H_6CrMo_6O_{24}}].8H_2O$, **5** from the supramolecular assembly of the tectons, $\{CrMo_6O_{24}\}$, oxalate bridged copper pyrazole complex and $\{Cu(pz)_3Cl(H_2O)_2\}^{1+}$. The geometry of tecton bridging 1D chains is different from **4** and hence the chains bend to account for the intermolecular interactions.

Fig. S8. Thermogravimetric analysis of 1.

Fig. S9. Thermogravimetric analysis of 2.

Fig. S10. Thermogravimetric analysis of 3.

Fig. S11. Thermogravimetric analysis of 4.

Fig. S12. Thermogravimetric analysis of 5.

Fig. S13. Reitveld refinement plot for 1. Rwp = 2.81, Rp = 2.62

Fig. S14. Reitveld refinement plot for 2.Rwp = 2.56, Rp = 2.31

Fig. S15. Reitveld refinement plot for 3. Rwp = 3.15, Rp = 2.94

Fig. S16. Reitveld refinement plot for 4. Rwp = 2.59, Rp = 2.28

Fig. S17. Reitveld refinement plot for 5. Rwp = 2.65, Rp = 2.43