ACCESSORY PUBLICATION

Crystal Structures, Antioxidation and DNA Binding Properties of Sm(III) Complexes

Yongchun Liu,^{A,B} Zhengyin Yang,^A Kejun Zhang,^B Yun Wu,^B Jihua Zhu^B and Tianlin Zhou^B

^ACollege of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, P. R. China. Tel.: +86-931-8913515, Fax: +86-931-8912582. Corresponding author: Zhengyin Yang, Email: <u>yangzy@lzu.edu.cn</u>

^BCollege of Chemistry and Chemical Engineering, Key Laboratory of Longdong Biological Resources in Gansu Province, Longdong University, 745000 Qingyang, Gansu, P. R. China.

Table of contents

Table S1. Selected bond lengths (Å) and bond angles with the torsion angles (°) for

(A) $[SmL^{1}(NO_{3})(DMF)_{2}]_{2}$, (B) $[SmL^{2}(NO_{3})(DMF)_{2}]_{2}$ and (C) $2[SmL^{3}(NO_{3})(DMF)_{2}]_{2} \cdot 5DMF$ complexes.

Table S2. The characteristic IR band data (v_{max}/cm^{-1}) of the metal complexes

Table S3. The UV-vis spectra values of λ_{max} (nm), ε_{max} (M⁻¹ cm⁻¹), hypochromicity and shifts of λ_{max} after additions of DNA for ligands and the Sm(III) complexes. The molar concentration of every investigated compound is 10.0 μ M. The molar concentrations of DNA (bps) at approximately saturated titration end points for **1a**, **1b**,

1c, 2a, 2b and 2c are 20.0, 16.0, 14.0, 16.0, 14.0, 16.0 $\mu M,$ respectively.

Fig. S1. Spectra of ¹H NMR for ligand **1a** (A) and complex **2a** (B).

Fig. S2. Effects of increasing amounts of the investigated compounds on the relative viscosity of CT-DNA in 5 mM Tris–HCl buffer solution (pH 7.20) containing 50 mM NaCl at $25.00\pm0.01^{\circ}$ C. Plots of (A) and (B) represent the ligands–CT-DNA and Sm(III) complexes–CT-DNA systems, respectively. The concentration of CT-DNA was 50 μ M (bps).

Fig. S3. UV-vis titration spectra of EB-DNA system (A) and the plot of A/A_o versus C_{DNA}/C_{EB} .

Fig. S4. The fluorescence emission spectra and the corresponding excitation spectra for the fluorescence quenching of EB-DNA systems by the titrations of **2b** and **2c**, respectively.

Fig. S5. McGhee & von Hippel plots for ligands and the Sm(III) complexes titrated by DNA.

Fig. S6. Plots of antioxidation properties for ligands and Sm(III) complexes.

			0				
Table S1.	Selected b	ond lengths	s (Å) and	l bond ar	ngles with	the torsion	angles (°).

(A) $[SmL^{1}(NO_{3})(DMF)_{2}]_{2}$ complex			
(A) $ SmL (NO_3)(DMF)_2 _2$ complex	($\mathbf{r} = \mathbf{r}^{1} (\mathbf{N} \mathbf{r}) (\mathbf{D} \mathbf{M} \mathbf{r}) \mathbf{I}$	1
	(A)	$ SmL(NO_3)(DMF)_2 _2$	complex

Bond length (Å)					
Sm(1)–O(2)	2.374(8)	Sm(1)-O(1)#1	2.420(7)	Sm(1)-O(7)	2.431(7)
Sm(1)–O(1)	2.462(7)	Sm(1)-O(6)	2.466(8)	Sm(1)–N(1)	2.545(8)
Sm(1)–O(4)	2.562(7)	Sm(1)-N(2)	2.591(9)	Sm(1)-O(3)	2.606(8)
Sm(1)-Sm(1)#1	4.0713(12)	N(1)–C(2)	1.347(14)	N(1)–C(3)	1.353(14)
N(2)-C(1)	1.283(13)	N(2)–N(3)	1.381(12)	N(3)–C(11)	1.339(14)
N(4)-O(5)	1.224(11)	N(4)–O(3)	1.257(12)	N(4)–O(4)	1.260(12)
N(5)-C(18)	1.314(15)	N(5)–C(20)	1.452(18)	N(5)–C(19)	1.467(15)
N(6)-C(21)	1.314(16)	N(6)-C(22)	1.431(17)	N(6)-C(23)	1.439(16)
O(1)–C(4)	1.345(11)	O(2)–C(11)	1.289(13)	O(6)–C(18)	1.236(13)
O(7)–C(21)	1.201(13)	C(1)–C(2)	1.444(17)	C(2)–C(10)	1.434(15)
C(3)–C(4)	1.427(15)	C(3)–C(8)	1.443(14)	C(4)–C(5)	1.363(15)
C(5)–C(6)	1.420(14)	C(6)–C(7)	1.352(17)	C(7)–C(8)	1.401(17)
C(8)–C(9)	1.399(17)	C(9)–C(10)	1.366(17)	C(11)–C(12)	1.500(17)
C(12)–C(17)	1.379(17)	C(12)–C(13)	1.404(16)	C(13)–C(14)	1.390(16)
C(14)–C(15)	1.367(19)	C(15)–C(16)	1.363(19)	C(16)–C(17)	1.388(18)
Bond angles (°)					
O(2)-Sm(1)-O(1)#1	98.0(2)	O(2)-Sm(1)-O(7)	78.2(3)	O(1)#1-Sm(1)-O(7)	75.4(2)
O(2)–Sm(1)–O(1)	162.6(2)	O(1)#1-Sm(1)-O(1)	67.0(2)	O(7)–Sm(1)–O(1)	89.1(3)
O(2)-Sm(1)-O(6)	77.8(3)	O(1)#1-Sm(1)-O(6)	73.2(2)	O(7)–Sm(1)–O(6)	137.0(3)
O(1)–Sm(1)–O(6)	104.7(3)	O(2)-Sm(1)-N(1)	123.0(3)	O(1)#1-Sm(1)-N(1)	125.5(3)
O(7)–Sm(1)–N(1)	79.6(3)	O(1)-Sm(1)-N(1)	65.0(3)	O(6)-Sm(1)-N(1)	143.2(3)
O(2)-Sm(1)-O(4)	126.1(3)	O(1)#1-Sm(1)-O(4)	112.8(3)	O(7)–Sm(1)–O(4)	150.2(3)
O(1)-Sm(1)-O(4)	70.0(2)	O(6)-Sm(1)-O(4)	70.9(3)	N(1)-Sm(1)-O(4)	72.5(3)
O(2)-Sm(1)-N(2)	61.5(3)	O(1)#1-Sm(1)-N(2)	140.3(3)	O(7)-Sm(1)-N(2)	67.6(3)
O(1)-Sm(1)-N(2)	124.4(3)	O(6)-Sm(1)-N(2)	127.2(3)	N(1)-Sm(1)-N(2)	61.6(3)
O(4)-Sm(1)-N(2)	106.4(3)	O(2)-Sm(1)-O(3)	81.1(3)	O(1)#1-Sm(1)-O(3)	146.5(2)
O(7)-Sm(1)-O(3)	135.8(3)	O(1)-Sm(1)-O(3)	116.2(2)	O(6)-Sm(1)-O(3)	73.9(3)
N(1)-Sm(1)-O(3)	79.7(3)	O(4)-Sm(1)-O(3)	48.8(3)	N(2)-Sm(1)-O(3)	68.2(3)
O(2)-Sm(1)-Sm(1)#1	131.30(18)	O(1)#1-Sm(1)-Sm(1)#1	33.81(17)	O(7)-Sm(1)-Sm(1)#1	80.9(2)
O(1)-Sm(1)-Sm(1)#1	33.16(14)	O(6)-Sm(1)-Sm(1)#1	88.9(2)	N(1)-Sm(1)-Sm(1)#1	95.2(2)
O(4)-Sm(1)-Sm(1)#1	91.33(19)	N(2)-Sm(1)-Sm(1)#1	143.0(2)	O(3)-Sm(1)-Sm(1)#1	139.67(19)
C(2)-N(1)-C(3)	121.8(10)	C(2)–N(1)–Sm(1)	121.1(8)	C(3)-N(1)-Sm(1)	116.6(7)
C(1)–N(2)–N(3)	117.4(10)	C(1)–N(2)–Sm(1)	122.6(9)	N(3)–N(2)–Sm(1)	120.0(7)
C(11)–N(3)–N(2)	108.6(9)	O(5)–N(4)–O(3)	121.8(11)	O(5)–N(4)–O(4)	122.1(11)
O(3)–N(4)–O(4)	116.0(9)	C(18)-N(5)-C(20)	119.9(11)	C(18)-N(5)-C(19)	122.4(13)

C(20)-N(5)-C(19)	117.4(12)	C(21)–N(6)–C(22)	120.4(12)	C(21)-N(6)-C(23)	122.0(14)
C(22)-N(6)-C(23)	117.6(13)	C(4)-O(1)-Sm(1)#1	127.4(7)	C(4)-O(1)-Sm(1)	118.8(7)
Sm(1)#1-O(1)-Sm(1)	113.0(2)	C(11)–O(2)–Sm(1)	122.6(8)	N(4)-O(3)-Sm(1)	96.5(6)
N(4)-O(4)-Sm(1)	98.6(6)	C(18)–O(6)–Sm(1)	130.9(8)	C(21)–O(7)–Sm(1)	144.5(9)
N(2)-C(1)-C(2)	116.2(12)	N(1)-C(2)-C(10)	118.7(12)	N(1)-C(2)-C(1)	117.3(10)
N(1)-C(3)-C(4)	117.4(10)	N(1)-C(3)-C(8)	121.9(11)	O(1)-C(4)-C(5)	124.5(11)
O(1)-C(4)-C(3)	118.4(11)	O(2)-C(11)-N(3)	125.5(11)	O(2)–C(11)–C(12)	118.6(11)
N(3)-C(11)-C(12)	115.9(11)	O(6)-C(18)-N(5)	125.1(12)	O(7)–C(21)–N(6)	127.1(14)

(B) [SmL²(NO₃)(DMF)₂]₂ complex

Bond length (Å)					
Sm(1)–O(2)	2.382(3)	Sm(1)–O(5)	2.415(3)	Sm(1)-O(1)#1	2.426(3)
Sm(1)–O(4)	2.434(3)	Sm(1)–O(1)	2.445(3)	Sm(1)–N(1)	2.522(3)
Sm(1)–O(7)	2.569(3)	Sm(1)-N(2)	2.582(3)	Sm(1)-Sm(1)#1	4.0599(5)
Sm(1)–O(6)	2.594(3)	C(1)–N(1)	1.361(5)	C(1)–C(6)	1.421(6)
C(1)–C(2)	1.428(6)	C(1)–O(1)	1.331(4)	C(2)–C(3)	1.368(6)
C(3)–C(4)	1.409(6)	C(4)–C(5)	1.359(7)	C(5)–C(6)	1.393(7)
C(6)–C(7)	1.395(7)	C(7)–C(8)	1.354(7)	C(8)–C(9)	1.420(6)
C(9)–N(1)	1.329(5)	C(9)–C(10)	1.464(7)	C(10)–N(2)	1.284(5)
C(11)–O(2)	1.280(5)	C(11)–N(3)	1.332(6)	C(11)–C(12)	1.485(6)
C(12)–C(13)	1.384(6)	C(12)–C(17)	1.406(6)	C(13)–C(14)	1.384(7)
C(14)-C(15)	1.384(7)	C(15)-C(16)	1.339(7)	C(16)–C(17)	1.402(7)
C(17)–O(3)	1.336(6)	C(18)–O(4)	1.240(6)	C(18)–N(4)	1.304(6)
C(19)–N(4)	1.437(7)	C(20)–N(4)	1.445(8)	C(21)–O(5)	1.207(6)
C(21)–N(5)	1.302(6)	C(22)–N(5)	1.429(8)	C(23)–N(5)	1.437(9)
N(2)-N(3)	1.368(5)	N(6)-O(8)	1.220(5)	N(6)–O(6)	1.255(5)
N(6)-O(7)	1.255(5)				
Bond angles (°)					
O(2)-Sm(1)-O(5)	78.75(12)	O(2)-Sm(1)-O(1)#1	97.89(9)	O(5)-Sm(1)-O(1)#1	75.31(10)
O(2)-Sm(1)-O(4)	77.74(11)	O(5)-Sm(1)-O(4)	137.65(11)	O(1)#1-Sm(1)-O(4)	73.66(10)
O(2)-Sm(1)-O(1)	162.48(10)	O(5)–Sm(1)–O(1)	88.34(11)	O(1)#1-Sm(1)-O(1)	67.09(10)
O(4)-Sm(1)-O(1)	105.06(11)	O(2)-Sm(1)-N(1)	122.67(11)	O(5)-Sm(1)-N(1)	78.59(11)
O(1)#1-Sm(1)-N(1)	125.46(10)	O(4)-Sm(1)-N(1)	143.58(11)	O(1)-Sm(1)-N(1)	65.11(10)
O(2)-Sm(1)-O(7)	125.67(10)	O(5)–Sm(1)–O(7)	149.26(11)	O(1)#1-Sm(1)-O(7)	114.12(10)
O(4)-Sm(1)-O(7)	71.40(10)	O(1)-Sm(1)-O(7)	70.71(9)	N(1)-Sm(1)-O(7)	72.32(11)
O(2)-Sm(1)-N(2)	61.34(11)	O(5)-Sm(1)-N(2)	67.40(11)	O(1)#1-Sm(1)-N(2)	139.86(10)
O(4)-Sm(1)-N(2)	127.04(12)	O(1)-Sm(1)-N(2)	124.26(11)	N(1)-Sm(1)-N(2)	61.35(12)
O(7)-Sm(1)-N(2)	105.58(11)	O(2)-Sm(1)-O(6)	80.41(11)	O(5)-Sm(1)-O(6)	135.16(11)
O(1)#1-Sm(1)-O(6)	147.06(10)	O(4)–Sm(1)–O(6)	73.85(11)	O(1)–Sm(1)–O(6)	117.08(10)
N(1)-Sm(1)-O(6)	80.11(11)	O(7)–Sm(1)–O(6)	48.79(10)	N(2)-Sm(1)-O(6)	67.76(11)
O(2)-Sm(1)-Sm(1)#1	131.02(7)	O(5)-Sm(1)-Sm(1)#1	80.27(9)	O(1)#1-Sm(1)-Sm(1)#1	33.69(7)
O(4)-Sm(1)-Sm(1)#1	89.33(8)	O(1)-Sm(1)-Sm(1)#1	33.40(6)	N(1)-Sm(1)-Sm(1)#1	95.35(8)

$\begin{array}{llllllllllllllllllllllllllllllllllll$
N(1)-C(1)-C(6) $122.3(4)$ $N(1)-C(1)-C(2)$ $116.8(4)$ $N(1)-C(9)-C(8)$ $121.4(5)$ $O(1)-C(2)-C(3)$ $124.3(4)$ $O(1)-C(2)-C(1)$ $118.2(4)$ $N(1)-C(9)-C(10)$ $115.3(4)$ $N(2)-C(10)-C(9)$ $116.4(4)$ $O(2)-C(11)-N(3)$ $124.6(4)$ $O(2)-C(11)-C(12)$ $119.1(4)$ $N(3)-C(11)-C(12)$ $116.3(4)$ $O(3)-C(17)-C(16)$ $118.6(5)$ $O(3)-C(17)-C(12)$ $123.4(5)$ $O(4)-C(18)-N(4)$ $125.4(5)$ $O(5)-C(21)-N(5)$ $125.7(5)$ $C(1)-N(1)-Sm(1)$ $116.6(2)$ $C(9)-N(1)-C(1)$ $119.5(4)$ $C(9)-N(1)-Sm(1)$ $123.2(3)$ $N(3)-N(2)-Sm(1)$ $119.8(3)$ $C(10)-N(2)-N(3)$ $117.9(4)$ $C(10)-N(2)-Sm(1)$ $122.3(3)$ $C(18)-N(4)-C(20)$ $120.3(5)$ $C(11)-N(3)-N(2)$ $110.0(4)$ $C(18)-N(4)-C(19)$ $122.7(5)$ $C(21)-N(5)-C(23)$ $119.7(5)$ $C(19)-N(4)-C(20)$ $116.6(5)$ $C(21)-N(5)-C(22)$ $123.5(5)$ $O(8)-N(6)-O(7)$ $122.5(4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
N(2)-C(10)-C(9)116.4(4) $O(2)-C(11)-N(3)$ 124.6(4) $O(2)-C(11)-C(12)$ 119.1(4) $N(3)-C(11)-C(12)$ 116.3(4) $O(3)-C(17)-C(16)$ 118.6(5) $O(3)-C(17)-C(12)$ 123.4(5) $O(4)-C(18)-N(4)$ 125.4(5) $O(5)-C(21)-N(5)$ 125.7(5) $C(1)-N(1)-Sm(1)$ 116.6(2) $C(9)-N(1)-C(1)$ 119.5(4) $C(9)-N(1)-Sm(1)$ 123.2(3) $N(3)-N(2)-Sm(1)$ 119.8(3) $C(10)-N(2)-N(3)$ 117.9(4) $C(10)-N(2)-Sm(1)$ 122.3(3) $C(18)-N(4)-C(20)$ 120.3(5) $C(11)-N(3)-N(2)$ 110.0(4) $C(18)-N(4)-C(19)$ 122.7(5) $C(21)-N(5)-C(23)$ 119.7(5) $C(19)-N(4)-C(20)$ 116.6(5) $C(21)-N(5)-C(22)$ 123.5(5) $O(8)-N(6)-O(7)$ 122.5(4)
N(3)-C(11)-C(12) $116.3(4)$ $O(3)-C(17)-C(16)$ $118.6(5)$ $O(3)-C(17)-C(12)$ $123.4(5)$ $O(4)-C(18)-N(4)$ $125.4(5)$ $O(5)-C(21)-N(5)$ $125.7(5)$ $C(1)-N(1)-Sm(1)$ $116.6(2)$ $C(9)-N(1)-C(1)$ $119.5(4)$ $C(9)-N(1)-Sm(1)$ $123.2(3)$ $N(3)-N(2)-Sm(1)$ $119.8(3)$ $C(10)-N(2)-N(3)$ $117.9(4)$ $C(10)-N(2)-Sm(1)$ $122.3(3)$ $C(18)-N(4)-C(20)$ $120.3(5)$ $C(11)-N(3)-N(2)$ $110.0(4)$ $C(18)-N(4)-C(19)$ $122.7(5)$ $C(21)-N(5)-C(23)$ $119.7(5)$ $C(19)-N(4)-C(20)$ $116.6(5)$ $C(21)-N(5)-C(22)$ $123.5(5)$ $O(8)-N(6)-O(7)$ $122.5(4)$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{cccccc} C(9)-N(1)-C(1) & 119.5(4) & C(9)-N(1)-Sm(1) & 123.2(3) & N(3)-N(2)-Sm(1) & 119.8(3) \\ C(10)-N(2)-N(3) & 117.9(4) & C(10)-N(2)-Sm(1) & 122.3(3) & C(18)-N(4)-C(20) & 120.3(5) \\ C(11)-N(3)-N(2) & 110.0(4) & C(18)-N(4)-C(19) & 122.7(5) & C(21)-N(5)-C(23) & 119.7(5) \\ C(19)-N(4)-C(20) & 116.6(5) & C(21)-N(5)-C(22) & 123.5(5) & O(8)-N(6)-O(7) & 122.5(4) \\ \end{array}$
C(10)-N(2)-N(3) 117.9(4) C(10)-N(2)-Sm(1) 122.3(3) C(18)-N(4)-C(20) 120.3(5) C(11)-N(3)-N(2) 110.0(4) C(18)-N(4)-C(19) 122.7(5) C(21)-N(5)-C(23) 119.7(5) C(19)-N(4)-C(20) 116.6(5) C(21)-N(5)-C(22) 123.5(5) O(8)-N(6)-O(7) 122.5(4)
C(11)-N(3)-N(2) 110.0(4) C(18)-N(4)-C(19) 122.7(5) C(21)-N(5)-C(23) 119.7(5) C(19)-N(4)-C(20) 116.6(5) C(21)-N(5)-C(22) 123.5(5) O(8)-N(6)-O(7) 122.5(4)
C(19)–N(4)–C(20) 116.6(5) C(21)–N(5)–C(22) 123.5(5) O(8)–N(6)–O(7) 122.5(4)
C(22)–N(5)–C(23) 116.8(6) O(8)–N(6)–O(6) 121.1(4) C(2)–O(1)–Sm(1) 119.3(2)
O(6)-N(6)-O(7) 116.3(4) C(2)-O(1)-Sm(1)#1 126.9(2) C(18)-O(4)-Sm(1) 131.5(3)
Sm(1)-O(1)-Sm(1)#1 112.91(10) C(11)-O(2)-Sm(1) 123.0(3) N(6)-O(7)-Sm(1) 98.0(2)
C(21)–O(5)–Sm(1) 142.4(3) N(6)–O(6)–Sm(1) 96.8(3)

(C) $2[SmL^{3}(NO_{3})(DMF)_{2}]_{2} \cdot 5DMF$ complex

Bond length (Å)					
Sm(1)–O(1)	2.377(4)	Sm(1)-O(2)#1	2.423(4)	Sm(1)-O(2)	2.441(4)
Sm(1)–O(7)	2.447(4)	Sm(1)–O(6)	2.448(4)	Sm(1)–O(3)	2.539(4)
Sm(1)–N(4)	2.544(4)	Sm(1)–N(2)	2.562(5)	Sm(1)–O(4)	2.621(4)
Sm(1)-Sm(1)#1	4.0291(5)	Sm(2)-O(8)	2.385(4)	Sm(2)–O(14)	2.414(5)
Sm(2)-O(9)#2	2.436(3)	Sm(2)-O(9)	2.440(3)	Sm(2)–O(13)	2.455(4)
Sm(2)–N(11)	2.531(4)	Sm(2)-O(10)	2.553(4)	Sm(2)-N(9)	2.568(4)
Sm(2)-O(11)	2.625(4)	Sm(2)-Sm(2)#2	4.0171(5)	N(1)–C(1)	1.320(8)
N(1)-N(2)	1.383(7)	N(2)–C(7)	1.284(7)	N(3)–C(2)	1.296(11)
N(3)-C(6)	1.355(11)	N(4)–C(8)	1.324(8)	N(4)-C(12)	1.347(8)
N(5)-O(5)	1.226(6)	N(5)–O(4)	1.254(6)	N(5)–O(3)	1.259(6)
N(6)-C(17)	1.316(8)	N(6)–C(19)	1.424(11)	N(6)-C(18)	1.462(9)
N(7)-C(20)	1.272(9)	N(7)–C(21)	1.440(11)	N(7)–C(22)	1.478(13)
N(8)-C(23)	1.309(7)	N(8)–N(9)	1.388(6)	N(9)–C(29)	1.270(7)
N(10)-C(24)	1.298(9)	N(10)-C(28)	1.324(10)	N(11)-C(30)	1.333(7)
N(11)-C(34)	1.347(7)	N(12)-O(12)	1.222(7)	N(12)-O(11)	1.248(6)
N(12)-O(10)	1.260(6)	N(13)-C(39)	1.305(7)	N(13)-C(40)	1.428(9)
N(13)-C(41)	1.446(8)	N(14)-C(42)	1.296(9)	N(14)-C(44)	1.423(12)
N(14)-C(43)	1.481(11)	N(15)-C(45)	1.318(9)	N(15)-C(47)	1.411(10)
N(15)-C(46)	1.434(9)	N(16)-C(48)	1.34(12)	N(16)-C(49)	1.5(4)
N(16)-C(50)	1.49(8)	O(1)–C(1)	1.277(7)	O(2)–C(13)	1.342(6)
O(2)-Sm(1)#1	2.423(4)	O(6)–C(17)	1.242(7)	O(7)–C(20)	1.196(8)
O(8)–C(23)	1.286(6)	O(9)–C(35)	1.335(6)	O(9)–Sm(2)#2	2.436(3)
O(13)–C(39)	1.244(6)	O(14)–C(42)	1.187(8)	O(15)–C(45)	1.234(9)
O(16)–C(48)	1.22(8)	C(1)–C(4)	1.502(9)	C(2)–C(3)	1.378(10)
C(3)–C(4)	1.378(10)	C(4)–C(5)	1.367(10)	C(5)–C(6)	1.384(10)

	1 447(0)	C(8) C(0)	1 429(9)	C(0) C(10)	1.248(0)
C(1) = C(8)	1.447(9)	C(8)=C(9)	1.428(8)	C(9) = C(10)	1.348(9)
C(10) = C(11)	1.393(9)	C(11) = C(16)	1.397(9)	C(11) = C(12)	1.421(8)
C(12) - C(13)	1.421(8)	C(13) - C(14)	1.364(8)	C(14) - C(15)	1.423(8)
C(15) - C(16)	1.344(10)	C(23) - C(26)	1.491(8)	C(24) - C(25)	1.375(9)
C(25)–C(26)	1.367(9)	C(26)–C(27)	1.360(9)	C(27)–C(28)	1.381(10)
C(29)–C(30)	1.463(8)	C(30)–C(31)	1.408(7)	C(31)–C(32)	1.353(8)
C(32)–C(33)	1.421(8)	C(33)–C(38)	1.398(8)	C(33)–C(34)	1.419(7)
C(34)–C(35)	1.432(7)	C(35)–C(36)	1.374(7)	C(36)–C(37)	1.410(7)
C(37)–C(38)	1.358(8)	N(17)-C(51)	1.30(7)	N(17)–C(52)	1.45(6)
N(17)-C(53)	1.48(6)	O(17)–C(51)	1.22(6)		
Bond angles (°)					
O(1)-Sm(1)-O(2)#1	98.56(13)	O(1)-Sm(1)-O(2)	166.17(13)	O(2)#1-Sm(1)-O(2)	68.14(14)
O(1)-Sm(1)-O(7)	81.25(15)	O(2)#1-Sm(1)-O(7)	74.70(14)	O(2)-Sm(1)-O(7)	91.17(14)
O(1)-Sm(1)-O(6)	79.15(14)	O(2)#1-Sm(1)-O(6)	71.67(13)	O(2)-Sm(1)-O(6)	99.32(13)
O(7)-Sm(1)-O(6)	137.68(15)	O(1)-Sm(1)-O(3)	121.38(13)	O(2)#1-Sm(1)-O(3)	117.39(14)
O(2)-Sm(1)-O(3)	70.23(13)	O(7)-Sm(1)-O(3)	149.18(14)	O(6)-Sm(1)-O(3)	71.42(13)
O(1)-Sm(1)-N(4)	123.68(16)	O(2)#1-Sm(1)-N(4)	O(2)-Sm(1)-N(4)	123.09(14)	64.76(14)
O(7)-Sm(1)-N(4)	76.17(15)	O(6)-Sm(1)-N(4)	144.91(15)	O(3)-Sm(1)-N(4)	73.70(14)
O(1)-Sm(1)-N(2)	62.00(15)	O(2)#1-Sm(1)-N(2)	141.69(15)	O(2)-Sm(1)-N(2)	126.15(14)
O(7)-Sm(1)-N(2)	70.06(15)	O(6)-Sm(1)-N(2)	128.89(14)	O(3)-Sm(1)-N(2)	100.68(15)
N(4)-Sm(1)-N(2)	61.87(16)	O(1)-Sm(1)-O(4)	73.90(14)	O(2)#1-Sm(1)-O(4)	142.13(13)
O(2)-Sm(1)-O(4)	118.79(13)	O(7)-Sm(1)-O(4)	137.44(15)	O(6)-Sm(1)-O(4)	70.46(13)
O(3)-Sm(1)-O(4)	48.95(13)	N(4)-Sm(1)-O(4)	89.49(14)	N(2)-Sm(1)-O(4)	67.86(15)
O(1)-Sm(1)-Sm(1)#1	132.67(10)	O(2)#1-Sm(1)-Sm(1)#1	34.22(8)	O(2)-Sm(1)-Sm(1)#1	33.92(8)
O(7)-Sm(1)-Sm(1)#1	81.59(11)	O(6)-Sm(1)-Sm(1)#1	84.78(10)	O(3)-Sm(1)-Sm(1)#1	94.11(10)
N(4)-Sm(1)-Sm(1)#1	94.01(11)	N(2)-Sm(1)-Sm(1)#1	146.02(11)	O(4)-Sm(1)-Sm(1)#1	140.04(10)
O(8)-Sm(2)-O(14)	82.84(15)	O(8)-Sm(2)-O(9)#2	96.92(12)	O(14)-Sm(2)-O(9)#2	74.45(13)
O(8)-Sm(2)-O(9)	165.17(13)	O(14)-Sm(2)-O(9)	88.57(14)	O(9)#2-Sm(2)-O(9)	69.04(12)
O(8)-Sm(2)-O(13)	77.78(13)	O(14)-Sm(2)-O(13)	138.33(14)	O(9)#2-Sm(2)-O(13)	71.78(12)
O(9)-Sm(2)-O(13)	101.26(12)	O(8)-Sm(2)-N(11)	123.63(13)	O(14)-Sm(2)-N(11)	76.20(15)
O(9)#2-Sm(2)-N(11)	125.42(13)	O(9)–Sm(2)–N(11)	65.24(12)	O(13)–Sm(2)–N(11)	144.54(14)
O(8)–Sm(2)–O(10)	123.08(14)	O(14)-Sm(2)-O(10)	147.62(14)	O(9)#2-Sm(2)-O(10)	116.24(13)
O(9)–Sm(2)–O(10)	69.50(13)	O(13)–Sm(2)–O(10)	71.46(13)	N(11)–Sm(2)–O(10)	73.08(14)
O(8)–Sm(2)–N(9)	61.89(13)	O(14)-Sm(2)-N(9)	71.47(15)	O(9)#2–Sm(2)–N(9)	141.57(14)
O(9)-Sm(2)-N(9)	126.44(13)	O(13)-Sm(2)-N(9)	126.91(14)	N(11)-Sm(2)-N(9)	61.90(14)
O(10) - Sm(2) - N(9)	102.08(15)	O(8) - Sm(2) - O(11)	76.31(14)	O(14) - Sm(2) - O(11)	139.36(15)
O(9)#2-Sm(2)-O(11)	141.90(13)	O(9) = Sm(2) = O(11)	117.55(13)	O(13) = Sm(2) = O(11)	70.14(13)
N(11) = Sm(2) = O(11)	86 87(14)	O(10) = Sm(2) = O(11)	48 70(14)	N(9) = Sm(2) = O(11)	67 96(15)
O(8) = Sm(2) = Sm(2) #2	131 31(9)	O(14) = Sm(2) = Sm(2) #2	79.77(11)	$O(9)$ #2_Sm(2)_Sm(2)#2	34.55(8)
O(9) = Sm(2) = Sm(2) #2	34 49(8)	O(13) - Sm(2) - Sm(2) #2	85 93(9)	N(11) = Sm(2) = Sm(2)#2	95 57(10)
O(10) = Sm(2) = Sm(2) # 2	93 18(10)	N(9) = Sm(2) = Sm(2) #2	146 69(11)	O(11) = Sm(2) = Sm(2) #2	139 30(10)
C(1) = N(1) = N(2)	108 1(5)	C(7) = N(2) = N(1)	117 6(5)	$C(7) = N(2) - Sm(2)\pi^2$	122.0(5)
N(1) = N(2) Sm(1)	120 4(3)	C(2) = N(3) C(6)	119 5(8)	C(8) = N(4) - C(12)	110.8(5)
$\Gamma(1) = \Gamma(2) = SIII(1)$	120.4(3)	C(12) = N(3) - C(0)	117.5(0)	O(5) N(5) O(4)	117.0(3)
C(8) - N(4) - Sm(1)	122.4(4)	C(12) = N(4) = Sm(1)	117.6(4)	U(5) - N(5) - O(4)	121.5(5)

O(5)-N(5)-O(3)	121.7(5)	O(4)–N(5)–O(3)	116.7(5)	C(17)-N(6)-C(19)	121.0(6)
C(17)–N(6)–C(18)	119.9(7)	C(19)–N(6)–C(18)	119.1(7)	C(20)-N(7)-C(21)	125.9(8)
C(20)-N(7)-C(22)	117.5(8)	C(21)–N(7)–C(22)	115.1(8)	C(23)-N(8)-N(9)	108.9(4)
C(29)-N(9)-N(8)	117.5(5)	C(29)–N(9)–Sm(2)	122.4(4)	N(8)-N(9)-Sm(2)	120.1(3)
C(24)-N(10)-C(28)	115.6(7)	C(30)–N(11)–C(34)	119.8(4)	C(30)-N(11)-Sm(2)	122.6(4)
C(34)–N(11)–Sm(2)	117.3(3)	O(12)–N(12)–O(11)	122.4(6)	O(12)–N(12)–O(10)	120.8(6)
O(11)-N(12)-O(10)	116.8(5)	C(39)-N(13)-C(40)	120.4(5)	C(39)-N(13)-C(41)	121.3(6)
C(40)-N(13)-C(41)	118.2(6)	C(42)-N(14)-C(44)	127.1(9)	C(42)-N(14)-C(43)	118.5(8)
C(44)-N(14)-C(43)	113.2(8)	C(45)-N(15)-C(47)	121.4(7)	C(45)-N(15)-C(46)	120.2(7)
C(47)–N(15)–C(46)	118.1(7)	C(48)–N(16)–C(50)	116(5)	C(49)-N(16)-C(50)	127(10)
C(48)-N(16)-C(49)	117(10)	C(13)-O(2)-Sm(1)#1	125.5(3)	C(13)-O(2)-Sm(1)	119.8(3)
C(1)-O(1)-Sm(1)	121.6(4)	N(5)-O(3)-Sm(1)	98.8(3)	N(5)-O(4)-Sm(1)	94.9(3)
Sm(1)#1-O(2)-Sm(1)	111.86(14)	C(20)–O(7)–Sm(1)	135.7(5)	C(23)-O(8)-Sm(2)	121.8(3)
C(17)–O(6)–Sm(1)	130.3(4)	C(35)–O(9)–Sm(2)	119.5(3)	Sm(2)#2-O(9)-Sm(2)	110.96(12)
C(35)–O(9)–Sm(2)#2	127.1(3)	N(12)-O(11)-Sm(2)	95.4(3)	C(39)–O(13)–Sm(2)	127.0(4)
N(12)-O(10)-Sm(2)	98.5(3)	O(1)–C(1)–N(1)	127.6(6)	O(1)-C(1)-C(4)	117.1(6)
C(42)–O(14)–Sm(2)	136.6(5)	N(1)-C(1)-C(4)	115.3(6)	N(3)-C(2)-C(3)	122.0(8)
N(3)-C(6)-C(5)	120.7(9)	N(2)-C(7)-C(8)	118.0(6)	N(4)-C(8)-C(9)	121.1(6)
N(4)-C(8)-C(7)	115.6(5)	N(4)-C(12)-C(11)	122.2(6)	N(4)-C(12)-C(13)	116.7(5)
O(6)-C(17)-N(6)	124.8(7)	O(7)–C(20)–N(7)	129.1(8)	O(8)-C(23)-N(8)	127.2(5)
O(8)-C(23)-C(26)	117.4(5)	N(8)-C(23)-C(26)	115.5(5)	N(10)-C(24)-C(25)	123.7(7)
N(10)-C(28)-C(27)	124.5(8)	N(9)-C(29)-C(30)	117.7(5)	N(11)-C(30)-C(31)	121.5(5)
N(11)-C(30)-C(29)	115.2(5)	N(11)-C(34)-C(33)	122.1(5)	N(11)-C(34)-C(35)	116.9(4)
O(9)-C(35)-C(36)	124.3(5)	O(9)–C(35)–C(34)	118.4(4)	O(13)-C(39)-N(13)	124.4(6)
O(14)-C(42)-N(14)	125.1(8)	O(15)-C(45)-N(15)	124.1(8)	O(16)-C(48)-N(16)	118(8)
C(51)–N(17)–C(52)	128(8)	C(51)–N(17)–C(53)	120(8)	C(52)-N(17)-C(53)	113(5)
O(17)-C(51)-N(17)	120(10)				

Complexes	v(OH)	v (OH)	v (CN)	v (CN)	v (C–OH)	v (C–O)			NO_3^-			$ ho_{ m r}$	$ ho_{ m w}$	v (MO)	
	H_2O	phenolic	azomethine	pyridine	free	bound	v_1	v_4	v_2	v_3	v_5	H_2O	H_2O	V (MO)	V (IVIIN)
$[L^{1}Sm(NO_{3})(OH_{2})_{2}]_{2}$	3415	_	1618	1556	_	1104	1495	1311	1034	812	765	947	656	521	488
$[L^{2}Sm(NO_{3})(OH_{2})_{2}]_{2}$	3429	3184	1601	1548	1277	1102	1492	1314	1037	839	756	942	652	535	487
$[L^{3}Sm(NO_{3})(OH_{2})_{2}]_{2}$	3399	_	1635	1591,1565	_	1100	1498	1316	1061	811	759	935	639	522	486

Table S2. The characteristic IR band data (v_{max}/cm^{-1}) of the metal complexes

Table S3. The UV-vis spectra values of λ_{max} (nm), ε_{max} (M^{-1} cm⁻¹), hypochromicity and shifts of λ_{max} after additions of DNA for ligands and the Sm(III) complexes. The molar concentration of every investigated compound is 10.0 μ M. The molar concentrations of DNA (bps) at approximately saturated titration end points for **1a**, **1b**, **1c**, **2a**, **2b** and **2c** are 20.0, 16.0, 14.0, 16.0, μ M, respectively.

	π–π*	aromatic ring	π – π * C=N and C=O		_	π–π* conju	gated aromatic ring	π-π* C=N-N=C		
Ligands	$\lambda_{\max}\left(\varepsilon\right)$	Hypochromicity	1 (a)	Hypochromicity	Complexes	1 (a)	Hypochromicity	1 (a)	Hypochromicity	
		$(\lambda_{\max} \text{ shifts})$	$\lambda_{\rm max}$ (E)	$(\lambda_{\max} \text{ shifts})$		$\lambda_{\rm max}$ (c)	$(\lambda_{\max} \text{ shifts})$	$\lambda_{\rm max}(\mathcal{E})$	$(\lambda_{\max} \text{ shifts})$	
1 a	295 (3.55)	34.3% (1 nm, red)	323 (2.11)	11.1% (1 nm, blue)	2a	324 (4.14)	24.9% (1 nm, red)	371 (2.75)	22.3% (0 nm)	
1b	294 (3.16)	30.1% (3 nm, red)	329 (2.36)	18.1% (3 nm, blue)	2b	323 (3.66)	20.6% (2 nm, red)	378 (3.55)	21.5% (0 nm)	
1c	290 (2.86)	8.4% (0 nm)	325 (1.78)	1.0% (0 nm)	2c	327 (4.39)	0.54% (0 nm)	374 (3.60)	0.94% (0 nm)	

Fig. S2. Effects of increasing amounts of the investigated compounds on the relative viscosity of CT-DNA in 5 mM Tris–HCl buffer solution (pH 7.20) containing 50 mM NaCl at $25.00\pm0.01^{\circ}$ C. Plots of (A) and (B) represent the ligands–CT-DNA and Sm(III) complexes–CT-DNA systems, respectively. The concentration of CT-DNA was 50 μ M (bps).

Fig. S3. UV-vis titration spectra of EB-DNA system (A) and the plot of A/A_o versus C_{DNA}/C_{EB} at 285 nm (B) in 5 mM Tris–HCl buffer solution (pH 7.20) containing 50 mM NaCl. The molar concentration of EB is 10.0 μ M and the molar concentration of CT-DNA added by every titration at 5 μ L of 2.0 mM increases from 0 to 104.0 μ M (nucleotides). A_o and A are the absorbances of EB containing solution at 285 nm in the absence and in the presence of CT-DNA, respectively.

Fig. S4. The fluorescence emission spectra and the corresponding excitation spectra for the fluorescence quenching of EB-DNA systems by the titrations of **2b** and **2c** complexes, respectively. Plots of (A) and (B) represent the fluorescence excitation spectra at $\lambda_{em} = 587$ nm and the fluorescence emission spectra at $\lambda_{ex} = 525$ nm for **2b**, respectively. The molar concentration of **2b** added in EB-DNA system by titration increase from 0 (a) to 20.0 μ M (d). Plots of (C) and (D) represent the fluorescence excitation spectra at $\lambda_{em} = 587$ nm and the fluorescence emission spectra at $\lambda_{ex} = 525$ nm for **2c**, respectively. The molar concentration of **2c** added in EB-DNA system by titration increase from 0 (a) to 56.0 μ M (d). Both curves of (e) depicted by dots (.....) in plots (A) and (C) represent the fluorescence excitation spectra of free EB at $\lambda_{em} =$ 596 nm, and both curves of (e) depicted by dots (.....) in plots (B) and (D) represent the fluorescence emission spectra of free EB at $\lambda_{em} =$ 596 nm, and both curves of (e) depicted by dots (.....) in plots (B) and (D) represent the fluorescence emission spectra of free EB at $\lambda_{ex} = 496$ nm. All the tests were performed under the conditions of 5 mM Tris–HCl buffer solution (pH = 7.20) containing 50 mM NaCl at 298 K. C_{DNA} = 2 μ M (bps), C_{EB} = 0.32 μ M.

Fig. S5. McGhee & von Hippel plots for ligands and the Sm(III) complexes titrated by DNA (bps) (P < 0.05). Plots of (A), (B) and (C) for **1a**-, **1b**- and **1c**-DNA systems at $\lambda_{ex} = 321-325$ nm and $\lambda_{em} = 442-443$ nm, respectively; Plots of (D), (E) and (F) for **2a**-, **2b**- and **2c**-DNA systems at $\lambda_{ex} = 321-323$ nm and $\lambda_{em} = 440-445$ nm, respectively. *n* is the exclusion parameter in DNA base pairs.

Fig. S6. Plots of antioxidation properties for ligands and Sm(III) complexes. (A) and (B) represent the hydroxyl radical scavenging effect (%) for ligands and Sm(III) complexes, respectively. (C) and (D) represent the superoxide radical scavenging effect (%) for ligands and Sm(III) complexes, respectively.

