```
10.1071/CH10471_AC
© CSIRO 2011
Australian Journal of Chemistry 2011, 64(4), 433-437
```

```
A Potential New RAFT-"Click" Reaction.
or
```

A Cautionary Note on the use of Diazomethane to Methylate RAFT-Synthesized Polymers ${ }^{\dagger}$

Ming C A Potential New RAFT-"Click" Reaction.
or
A Cautionary Note on the use of Diazomethane to Methylate RAFT-Synthesized Polymers ${ }^{\dagger}$

Ming Chen,* Graeme Moad,* and Ezio Rizzardo*

CSIRO Materials Science and Engineering, Bag 10, Clayton South, Victoria 3169, Australia ming.chen@csiro.au, graeme.moad@csiro.au, ezio.rizzardo@csiro.au

Tel: +61-3-95452491; Fax: +61-3-95452446
hen,* Graeme Moad,* and Ezio Rizzardo*
CSIRO Materials Science and Engineering, Bag 10, Clayton South, Victoria 3169, Australia ming.chen@csiro.au, graeme.moad@csiro.au, ezio.rizzardo@csiro.au

Tel: +61-3-95452491; Fax: +61-3-95452446

Supporting information

The thermal decomposition of the $\mathbf{1 , 3}$-dithiolanes. The decomposition of the 1,3-dithiolane $\mathbf{1 0}$ was monitored by the changes in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0}$ in d_{5}-chlorobenzene (Figure 2). Similar decomposition behaviour was also observed for compound $\mathbf{1 1}$ when it was heated in d_{5}-chlorobenzene.

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra of compound 10 in d_{5}-chlorobenzene $\left(\sim 5 \mathrm{mg} \mathrm{ml}^{-1}\right)$, which was heated in the probe of the NMR spectrometer for the time and temperatures indicated.

It was observed that $\mathbf{1 0}$ first underwent stereo-equilibration during heating. The formation of $\mathbf{1 1}$ is evidenced by the ${ }^{1} \mathrm{H}$ NMR signals at $\delta 3.91,4.62$ and at 7.36 . When the temperature reached to 393 K , the formation of dithiobenzoate $\mathbf{9}$ is indicated by the appearance of a signal at 1.65. The formation of Compound $\mathbf{9}$ was confirmed by isolation using column
chromatography on silica gel after the experiment. On keeping the solution at 403 K for 18 h , the 1,3-dithiolanes were completely decomposed to $\mathbf{9}$ and other by-products.

