10.1071/CH11041_AC © CSIRO 2011 Australian Journal of Chemistry, 2011, 64(3), 273–278

Stabilization of triam(m)inechloridoplatinum complexes by oxidation to Pt(IV)

Helen L. Daly¹, Matthew D. Hall¹, Timothy W. Failes¹, Mei Zhang², Garry J. Foran³ and Trevor W. Hambley^{1,4}

- 1. School of Chemistry, The University of Sydney, NSW 2006, Australia
- 2. Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Australian Synchrotron Research Program, c/- ANSTO, Private Mail Bag 1, Menai, N.S.W. 2234, Australia
- 4.Corresponding author. Email: trevor.hambley@sydney.edu.au

Supplementary Figure S1. XANES spectrum of a control (untreated) A2780 ovarian cancer cell line pellet, demonstrating the lack of an edge due to Pt.

Supplementary Figure S2. Example XANES spectra of Pt(II) and Pt(IV) complexes, showing the difference in peak heights for the two oxidation states, and the parameters **a** and **b** used in determining the ratio **a/b**. Note the greater degree of absorption in the white line height of Pt(IV) complexes.