10.1071/CH11060_AC
© CSIRO 2011
Australian Journal of Chemistry 2011, 64(5), 583-589

ACCESSORY PUBLICATION

Contrasting Reactivity of 2-Mesityl-1,8-Naphthyridine (Mes-NP) with Singly-Bonded $\left[\mathrm{Rh}^{\mathrm{II}}-\mathrm{Rh}^{\mathrm{II}}\right]$ and $\left[\mathrm{Ru}^{\mathrm{I}}-\mathrm{Ru}^{\mathrm{I}}\right]$ Compounds

Biswajit Saha, S. M. Wahidur Rahaman, Arup Sinha and Jitendra K. Bera*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.

* To whom correspondence should be addressed. E-mail: jbera@iitk.ac.in

Contents

Scheme S1: Mechanism for oxidation of alcohol to aldehyde by $\mathbf{2}$ in presence of tempo
General procedures for catalysis 3

Table S1. Relevant Metrical Parameters of Compound 1 5
Table S2: Relevant metrical parameters for Compound 2

$$
[\mathrm{Ru}]=\left[\mathrm{Ru}(\mathrm{NP}-\mathrm{Mes})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}
$$

Scheme S1: Oxidation of alcohol to aldehyde by catalyst $\mathbf{2}$ in presence of tempo.

Oxidation of alcohol to aldehyde: Catalyst $2(0.01 \mathrm{mmol}, 9 \mathrm{mg})$ was dissolved in 1 mL dichloroethane solution and 3 mL toluene was added to it. Then alcohol (1 mmol) and tempo (2 $\mathrm{mmol}, 292 \mathrm{mg}$) were added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 6 h . The progress of the reaction was monitored by GC. After the reaction was over, the resulting mixture was cooled to room temperature, then it was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$. The ethereal solution was washed with brine ($3 \times 10 \mathrm{~mL}$) and dried over MgSO_{4} and filtered. After removing the solvent under vacuum, the product was purified by chromatography on a silica gel column using a mixture hexane/EtOAc as eluent.

Aldehyde-olefination reaction: 3 mL toluene solution of EDA ($1.5 \mathrm{mmol}, 0.14 \mathrm{~mL}$) was added drop-wise to the mixture of triphenylphosphine ($1.2 \mathrm{mmol}, 314 \mathrm{mg}$), aldehyde (1 mmol) and catalyst $2(0.01 \mathrm{mmol}, 9 \mathrm{mg})$ in toluene and dichloroethane solution mixture over a period of 30 min under nitrogen atmosphere. Then the solution was heated for 6 h at $80^{\circ} \mathrm{C}$. The progress of the reaction was monitored by GC. After the reaction was over, the resulting mixture was cooled to room temperature, then it was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$. The ethereal solution was washed with brine $(3 \times 10 \mathrm{~mL})$ and dried over MgSO_{4} and filtered. After removing the solvent under vacuum, the product was purified by chromatography on a silica gel column using a mixture hexane/EtOAc as eluent.

One pot synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-unsaturated ester from alcohol: Catalyst $\mathbf{2}(0.02 \mathrm{mmol}, 18 \mathrm{mg})$ was dissolved in 1 mL dichloroethane solution and the 3 mL toluene was added to it. Then alcohol (1 mmol) and tempo ($2 \mathrm{mmol}, 292 \mathrm{mg}$) were added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 6 h. After 6 h reaction mixture is cooled to room temperature and then triphenylphosphine (1.2 $\mathrm{mmol}, 314 \mathrm{mg}$) was directly added in the same reaction mixture and 3 mL toluene solution of

EDA ($1.5 \mathrm{mmol}, 0.14 \mathrm{~mL}$) was added drop wise over it. Then the solution was heated for 6 h at $80^{\circ} \mathrm{C}$. The progress of the reaction was monitored by GC. After the reaction was over, the resulting mixture was cooled to room temperature, then it was extracted with diethyl ether ($3 \times$ 20 mL). The ethereal solution was washed with brine $(3 \times 10 \mathrm{~mL})$ and dried over MgSO_{4} and filtered. After removing the solvent under vacuum, the product was purified by chromatography on a silica gel column using a mixture hexane/EtOAc as eluent.

Table S1. Selected Bond Lengths (\AA) and Bond Angles (deg) and Dihedral Angles (deg) for $\mathbf{1 .}{ }^{a}$

	Bond Lengths (A)		
Rh1-N1	$2.001(3)$	C12-C13	$1.367(5)$
Rh1-O2	$2.016(2)$	C12-C11	$1.402(5)$
Rh1-O1	$2.028(2)$	C19-C26	$1.401(5)$
Rh1-N2	$2.044(3)$	C19-C20	$1.411(5)$
Rh1-Rh1	$2.3866(5)$	C26-C25	$1.395(5)$
F3-B1	$1.394(5)$	C26-C27	$1.514(5)$
F4-B1	$1.383(5)$	C20-C22	$1.391(5)$
F2-B1	$1.392(5)$	C20-C21	$1.502(5)$
N1-C18	$1.334(4)$	C22-C23	$1.396(5)$
N1-C15	$1.361(4)$	C25-C23	$1.383(5)$
C14-C15	$1.407(4)$	C23-C24	$1.509(5)$
C14-C13	$1.411(5)$	O1-C1	$1.277(4)$
C14-C16	$1.418(5)$	F1-B1	$1.395(5)$
C18-C17	$1.413(5)$	C1-O2	$1.276(4)$
C18-C19	$1.491(5)$	C1-C2	$1.496(5)$
C16-C17	$1.363(5)$	O2-Rh1	$2.016(2)$
C15-N2	$1.371(4)$	C11-C1S	$1.767(4)$
N2-C11	$1.325(5)$	C1S-C11	$1.767(4)$
N2-Rh1	$2.044(3)$		
	Bond Angles $($ deg $)$		
N1-Rh1-O2	$88.31(10)$	C12-C13-C14	$119.4(3)$
N1-Rh1-O1	$92.78(10)$	N2-C11-C12	$123.2(3)$
O2-Rh1-O1	$176.22(9)$	C26-C19-C20	$120.6(3)$
N1-Rh1-N2	$177.81(11)$	C26-C19-C18	$120.1(3)$
O2-Rh1-N2	$90.45(10)$	C20-C19-C18	$119.3(3)$
O1-Rh1-N2	$88.34(10)$	C25-C26-C19	$118.7(3)$
N1-Rh1-Rh1	$88.99(8)$	C25-C26-C27	$119.4(3)$
O2-Rh1-Rh1	$88.61(7)$	C19-C26-C27	$121.9(3)$
O1-Rh1-Rh1	$87.79(7)$	C22-C20-C19	$118.1(3)$
N2-Rh1-Rh1	$89.17(8)$	C22-C20-C21	$119.7(3)$
C18-N1-C15	$120.4(3)$	C19-C20-C21	$122.2(3)$
C18-N1-Rh1	$115.6(2)$	C20-C22-C23	$122.2(4)$
C15-N1-Rh1	$123.9(2)$	C23-C25-C26	$121.9(3)$
C15-C14-C13	$117.6(3)$	C25-C23-C22	$118.2(4)$
C15-C14-C16	$117.7(3)$	C25-C23-C24	$120.5(4)$
C13-C14-C16	$124.6(3)$	C22-C23-C24	$121.2(4)$

N1-C18-C17	$121.3(3)$	C1-O1-Rh1	$119.6(2)$			
N1-C18-C19	$113.6(3)$	F4-B1-F2	$109.8(3)$			
C17-C18-C19	$125.2(3)$	F4-B1-F3	$109.8(3)$			
C17-C16-C14	$120.0(3)$	F2-B1-F3	$109.1(4)$			
N1-C15-N2	$116.4(3)$	F4-B1-F1	$109.6(4)$			
N1-C15-C14	$121.2(3)$	F2-B1-F1	$109.3(3)$			
N2-C15-C14	$122.4(3)$	F3-B1-F1	$109.2(3)$			
C16-C17-C18	$119.3(3)$	O2-C1-O1	$124.6(3)$			
C11-N2-C15	$117.9(3)$	O2-C1-C2	$118.4(3)$			
C11-N2-Rh1	$120.8(2)$	O1-C1-C2	$117.0(3)$			
C15-N2-Rh1	$121.3(2)$	C1-O2-Rh1	$119.4(2)$			
C13-C12-C11	$119.2(3)$	Cl1-C1S-C11	$111.3(4)$			
Dihedral Angles (deg)						
Ru1-N1-C15-N2	$2.4(3)$				Ru1-N2-C18-C19	$7.3(7)$
N3-Ru1-N2-C18	$88.3(5)$					
Symmetry transformation used to generate equivalent atoms: 1/2-X, 3/2-Y, 2-Z.						

Table S2. Selected Bond Lengths (\AA) and Bond Angles (deg) and Dihedral Angles (deg) for 2. ${ }^{a}$

	Bond Lengths (Å)						
Ru1-N3	$2.018(3)$	C15-C14	$1.388(5)$				
Ru1-N3	$2.018(3)$	C21-C22	$1.386(6)$				
Ru1-N2	$2.086(3)$	C14-C13	$1.408(5)$				
Ru1-N2	$2.086(3)$	C14-C16	$1.415(6)$				
Ru1-N1	$2.100(3)$	C11-C12	$1.406(6)$				
Ru1-N1	$2.100(3)$	C18-C17	$1.421(5)$				
N2-C18	$1.319(5)$	C23-C22	$1.400(6)$				
N2-C15	$1.362(4)$	C12-C13	$1.369(6)$				
N1-C11	$1.322(5)$	C16-C17	$1.372(5)$				
N1-C15	$1.358(5)$	C22-C27	$1.505(5)$				
C24-C23	$1.389(5)$	C1-C2	$1.454(6)$				
C24-C19	$1.411(5)$	Cl1S-C1S	$1.739(5)$				
C24-C25	$1.507(5)$	C1S-Cl1S	$1.739(5)$				
C19-C20	$1.397(5)$	F1-B1	$1.367(6)$				
C19-C18	$1.494(5)$	F3-B1	$1.364(6)$				
N3-C1	$1.128(5)$	F4-B1	$1.364(6)$				
C20-C21	$1.392(5)$	F2-B1	$1.355(5)$				
C20-C26	$1.514(6)$						
	Bond Angles (deg)						
N3-Ru1-N3	$180.0(2)$	C21-C20-C26	$120.1(4)$				
N3-Ru1-N2	$88.48(12)$	C19-C20-C26	$121.6(4)$				
N3-Ru1-N2	$91.52(12)$	N1-C15-N2	$108.3(3)$				
N3-Ru1-N2	$91.52(12)$	N1-C15-C14	$125.7(3)$				
N3-Ru1-N2	$88.48(12)$	N2-C15-C14	$125.9(3)$				
N2-Ru1-N2	$180.00(12)$	C22-C21-C20	$122.1(4)$				
N3-Ru1-N1	$90.75(12)$	C15-C14-C13	$115.6(4)$				
N3-Ru1-N1	$89.25(12)$	C15-C14-C16	$114.9(3)$				
N2-Ru1-N1	$63.58(12)$	C13-C14-C16	$129.4(4)$				
N2-Ru1-N1	$116.42(12)$	N1-C11-C12	$121.0(4)$				
N3-Ru1-N1	$89.25(12)$	N2-C18-C17	$120.1(3)$				
N3-Ru1-N1	$90.75(12)$	N2-C18-C19	$116.3(3)$				
					7		

N2-Ru1-N1	$116.42(12)$	C17-C18-C19	$123.5(3)$
N2-Ru1-N1	$63.58(12)$	C24-C23-C22	$121.4(4)$
N1-Ru1-N1	$180.0(3)$	C13-C12-C11	$121.1(4)$
C18-N2-C15	$118.3(3)$	C17-C16-C14	$119.6(4)$
C18-N2-Ru1	$147.4(3)$	C21-C22-C23	$118.6(4)$
C15-N2-Ru1	$94.2(2)$	C21-C22-C27	$121.1(4)$
C11-N1-C15	$117.5(3)$	C23-C22-C27	$120.3(4)$
C11-N1-Ru1	$148.7(3)$	C12-C13-C14	$119.0(4)$
C15-N1-Ru1	$93.8(2)$	C16-C17-C18	$121.0(4)$
C23-C24-C19	$118.4(3)$	N3-C1-C2	$178.7(5)$
C23-C24-C25	$120.1(3)$	Cl-1S-C1S-C11S	$114.1(5)$
C19-C24-C25	$121.5(3)$	F2-B1-F3	$111.0(5)$
C20-C19-C24	$121.2(3)$	F2-B1-F4	$112.0(4)$
C20-C19-C18	$118.8(3)$	F3-B1-F4	$108.8(4)$
C24-C19-C18	$120.0(3)$	F2-B1-F1	$107.7(4)$
C1-N3-Ru1	$179.1(3)$	F3-B1-F1	$107.6(4)$
C21-C20-C19	$118.3(4)$	F4-B1-F1	$109.7(4)$
	Dihedral Angles (deg)		
Rh1-N1-C15-N2	$4.8(4)$	Rh1-O2-C1-O1	$1.7(3)$
Rh1-N1-C18-C19	$6.9(3)$	Rh1-O2-C1-C2	$179.1(3)$

[^0]
[^0]: ${ }^{a}$ Symmetry transformation used to generate equivalent atoms: $1 / 2-\mathrm{X}, 1 / 2-\mathrm{y},-\mathrm{z}$.

