©CSIRO 2012

Australian Journal of Chemistry 2012, 65(7), 723-729

## **Supplementary Material**

Reactions of Aniline with Copper(II) Compounds in Relation to the Formation of Copper-Polyaniline Composites

Adeline Le Cocq, <sup>A</sup> Marija R. Gizdavic-Nikolaidis, <sup>A</sup> Allan J. Easteal, <sup>A</sup> and Graham A. Bowmaker <sup>A,B</sup>

<sup>&</sup>lt;sup>A</sup>School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.

<sup>&</sup>lt;sup>B</sup>Corresponding author. Email: ga.bowmaker@auckland.ac.nz

## Raman spectroscopy

The Raman spectra are shown in Fig. S1. Products  $A_1$ ,  $B_2$  and  $C_1$  showed very similar spectra, with the exception of an additional band at 983 cm<sup>-1</sup> due to sulfate in the CuSO<sub>4</sub>: aniline product  $A_1$ . The absence of this band in the spectrum of  $B_2$  implies an absence of sulfate in this product, which is consistent with the low value for the S content found from the elemental analysis (Table 1). The spectra of products  $A_1$  and  $B_2$  are very similar, whereas their FT-IR spectra are quite different (Fig. 2). The most likely explanation for the similarity of the Raman spectra is that both compounds decomposed in the laser beam to give similar products (or that  $A_1$  decomposed to give something similar to  $B_2$ ). The broad bands in the spectrum are unexpected for a simple coordination compound (cf. the sharp bands in the IR spectra), and because of this uncertainty no further use was made of Raman spectroscopy.



**Fig. S1.** Raman spectra of Cu(II)-aniline products. (a) A<sub>1</sub>; (b) B<sub>2</sub>; (c) C<sub>1</sub>; (d) PANi ES.