Supplementary Material

Synthesis and X-Ray Crystal Structure of Cynandione B Analogues

Lisa P. T. Hong, Jonathan M. White, Christopher D. Donner*

a School of Chemistry, The University of Melbourne, Victoria 3010, Australia
b Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
*E-mail: cdonner@unimelb.edu.au
Fax +61 3 9347 8189

Table of contents

1.1 General information S2

1.2 1H and 13C NMR spectra for compounds 9, 13, 16-17, 23-24 S3-S8
1.1 GENERAL EXPERIMENTAL DETAILS

1H and 13C NMR spectra were recorded using a Varian-500 spectrometer operating at 500 MHz and 125 MHz, respectively. NMR spectra were obtained in either CDCl$_3$, d$_6$-acetone or d$_6$-DMSO, as indicated. Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Gas chromatography-mass spectrometry (GCMS) spectra were recorded on an Agilent 7890A GC system using a HP-5MS column (30 m, i.d. 0.25 mm, film thickness 0.25 µm) and 5975C MS system (EI, 70 eV). GC heat program : 100$^\circ$C \rightarrow 250$^\circ$C, heating rate 5 $^\circ$C min$^{-1}$. The retention time (R_t) and selected fragment ions as their mass/charge ratio (m/z) are reported. All moisture sensitive reactions were performed under a dry nitrogen or argon atmosphere in oven-dried or flame-dried glassware. Anhydrous tetrahydrofuran (THF) was pre-dried over activated alumina under argon. Thin layer chromatography was performed on pre-coated silica plates (Merck 60GF$_{254}$) and compounds were visualised at 254 nm and 365 nm or stained with either phosphomolybdic acid or potassium permanganate solutions. Flash column chromatography was performed on silica gel (Kieselgel 60, 230-400 mesh) using the indicated solvent system.
1.2 1H and 13C NMR SPECTRA

![NMR Spectra Image]