10.1071/CH12018_AC ©CSIRO 2012 Australian Journal of Chemistry 2012, 65(4), 402-408

Supplementary Material

The Bioreductive Alkylation of DNA by Kalafungin: A Theoretical Investigation

Paul A. Hume, Margaret A. Brimble and Jóhannes Reynisson^{*}

School of Chemical Sciences, The University of Auckland, New Zealand.

*To whom correspondence should be addressed: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. E-mail: j.reynisson@auckland.ac.nz, Tel. 64-9-373-7599 ext. 83746, Fax. 64-9-373-7422

Scheme S1 2-electron reduction of kalafungin.

Table S1. The single point and zero point vibrational energies (ZPE) of the structurally optimized molecules in Hartrees (a.u.). The molecular structures are shown in Scheme S1.

System	Energy / a.u.	ZPE / a.u.
1	-1068.5972533	0.25089612
2	-1068.67000164	0.24860983
3a	-1069.18599342	0.26153543
3b	-1069.18702931	0.26085209
4a	-1069.27568785	0.25978541

4b	-1069.26108186	0.25949031	
5	-1069.80829624	0.27296395	

Scheme S2 Monoalkylation of singly-rearranged kalafungin.

Table S2. The single point and zero point vibrational energies (ZPE) of the structurally optimized molecules in
Hartrees (a.u.). The molecular structures are shown in Scheme S2.

System	Energy / a.u.	ZPE / a.u.
H ₂ O	-76.44970039	0.02094625
9-methyl guanine	-582.05152215	0.141935449
O ₂	-150.37272458	0.00370787
5	-1069.80829624	0.27296395
6	-1069.80102435	0.27153354
- (* -)		
7a (C-8)	-1651.88299584	0.417710204
7a (NH₂)	-1651.86827323	0.417900402
7a (H₂O)	-1146.27112987	0.29957298
7b (C-8)	-1651.87907093	0.417229808
7b (NH ₂)	-1651.86490254	0.417567066
7b (H₂O)	-1146.27204003	0.29877886
8a (C-8)	-1650.67732841	0.395789441
8a (NH ₂)	-1650.66034016	0.395593361
8a (H₂O)	-1145.06448081	0.27739928
8b (C-8)	-1650.67100521	0.39495512
8b (NH ₂)	-1650.65693774	0.395236495
8b (H₂O)	-1145.06200849	0.27695320

Scheme S3 Bis-alkylation Scenario 1

*C-8 guanine substituted product contains internal hydrogen bond.

, ,

5

System	Energy / a.u.	ZPE / a.u.
H₂O	-76.44970039	0.02094625
9-methyl guanine	-582.05152215	0.141935449
O ₂	-150.37272458	0.00370787
5	-1069.80829624	0.27296395
6	-1069.80102435	0.27153354
٩F	-1069 78855605	0 26955412
07	1060.78006471	0.26022255
JL	-1009.70900471	0.20923233
	4054 05004040	0.445007040
10a (C-8) E	-1651.85231646	0.415067046
10a (NH ₂) E	-1651.83920157	0.416157251
10a (H₂O) <i>E</i>	-1146.24682062	0.29707591
10a (C-8) Z	-1651.86525959	0.415255283
10a (NH ₂) Z	-1651.84323529	0.4157396
10a (H₂O) Z	-1146.24823742	0.29637590
. ,		
10b (C-8) F	-1651 84671053	0 41517489
10b (NH ₂) E	-1651 83857823	0.416339605
105 (N12) E	1146 22502254	0.4100030000
$100 (\Pi_2 O) E$	-1140.23592254	0.29002100
10b (C-8) Z	-1651.86311018	0.415350382
10b (NH ₂) Z	-1651.83766576	0.416222938
10b (H ₂ O) Z	-1146.25263412	0.29749944
11a (C-8)	-2233.95295169	0.562195674
11a (NH₂)	-2233.92594133	0.563969218
11a (H₂O)	-1222.72609575	0.32530848
11b (C-8)	-2233.95451236	0.561884887
11b (NH ₂)	-2233 92169252	0 56331431
11b (H ₂ O)	-1222 72503054	0.32404868
	-1222.7200004	0.02+0+000
11c (C-9)	2222 05501170	0 561062210
110 (0-0)	-2233.93301170	0.501905519
11C (NH ₂)	-2233.92701492	0.563332938
11C (H ₂ O)	-1222.72830720	0.32545751
11d (C-8)	-2233.95114589	0.56167214
11d (NH₂)	-2233.91955191	0.563696666
11d (H₂O)	-1222.72737736	0.32573986
12a (C-8)	-2232.74743036	0.539675886
12a (NH₂)	-2232.71173669	0.539970006
12a (H ₂ O)	-1221.51082542	0.30333674
(-)		
12b (C-8)	-2232 73789654	0 540330793
12b (NH _a)	-2232 70730083	0.539/680/1
125 (N12) 125 (U.O)	1221 50706124	0.00046419
	-1221.30790124	0.30240410
	0000 70055000	0 540054070
120 (0-8)	-2232.73355338	0.540051379
12C (NH ₂)	-2232.70941376	0.539026861
12c (H₂O)	-1221.49916788	0.30187104
12d (C-8)	-2232.72642424	0.538919998
12d (NH ₂)	-2232.69860329	0.539817064
12d (H ₂ O)	-1221.50529102	0.30291517

Table S3. The single point and zero point vibrational energies (ZPE) of the structurally optimized molecules in
Hartrees (a.u.). The molecular structures are shown in Scheme S3.

Scheme S4 Bis-alkylation Scenario 2

H₂O -76.44970039 0.02094625 9-methyl guanine -582.05152215 0.141935449 O₂ -150.37272458 0.00370787
9-methyl guanine -582.05152215 0.141935449 O2 -150.37272458 0.00370787
S-methyl guanne -582.05152215 0.141935449 O2 -150.37272458 0.00370787
U ₂ -150.37272458 0.00370787
9 <i>F</i> -1069 78855605 0 26955412
97 -1069,78006471 0,26023255
32 -1003.10300471 0.20323233
13a (0.6) = 1051.045127 = 0.416100694
13a (110) -1051.05095146 0.410190504 -1440.04000714 - 0.00047404
13D (C-8) -1051.84357743 0.415560187
13D (NH2) -1651.8376973 0.416258232
13b (H₂O) -1146.24846741 0.29795140
11a (C-8) -2233.95295169 0.562195674
11a (NH₂) -2233.92594133 0.563969218
11a (H₂O) -1222.72609575 0.32530848
11b (C-8) -2233.95451236 0.561884887
11b (NH₂) -2233.92169252 0.56331431
11b (H₂O) -1222.72503054 0.32494868
11c (C-8) -2233.95501170 0.561963319
11c (NH₂) -2233.92701492 0.563332938
11c (H₂O) -1222.72830720 0.32545751
11d (C-8) -2233.95114589 0.56167214
11d (NH₂) -2233.91955191 0.563696666
11d (H₂O) -1222.72737736 0.32573986

Table S4. The single point and zero point vibrational energies (ZPE) of the structurally optimized molecules in
Hartrees (a.u.). The molecular structures are shown in Scheme S4.

Scheme S5 One-electron Reduction and Rearrangement Part1

Table S5. The single point and zero point vibrational energies (ZPE) of the structurally optimized molecules in
Hartrees (a.u.). The molecular structures are shown in Scheme S5.

System	Energy / a.u.	ZPE / a.u.
H ₂ O	-76.44970039	0.02094625
9-methyl guanine	-582.05152215	0.141935449
O ₂	-150.37272458	0.00370787
1	-1068.5972533	0.25089612
2	-1068.67000164	0.24860983
3a	-1069.18599342	0.26153543
3b	-1069.18702931	0.26085209
14	-1069.1812627	0.25910011
15a (C-8)	-1651.26230988	0.405806188
15a (NH ₂)	-1651.25026521	0.405907169
15a (H₂O)	-1145.64475993	0.28706602
15b (C-8)	-1651.25942517	0.405065005
15b (NH ₂)	-1651.25201482	0.406370898
15b (H₂O)	-1145.65130896	0.28514444

Scheme S6 One-electron Reduction and Rearrangement Part 2

System	Energy / a.u.	ZPE / a.u.
H ₂ O	-76.44970039	0.02094625
9-methyl guanine	-582.05152215	0.141935449
O ₂	-150.37272458	0.00370787
15a (C-8)	-1651,26230988	0.405806188
15a (NH ₂)	-1651 25026521	0 405907169
15a (H₂O)	-1145 64475993	0 28706602
	1110.011100000	0.201 00002
15h (C-8)	-1651 25942517	0 405065005
15b (NH ₂)	-1651 25201/82	0.406370898
15b (H ₂ O)	-11/5 65130896	0.2851/////
100 (1120)	-11-0.00100000	0.20014444
8a (C-8)	-1650 677328/1	0 305780//1
8a (NH _a)	-1650 66034016	0.305503361
82 (H.O)	11/5 06//2009	0.393393301
0a (120)	-1140.00440001	0.21139920
8b (C-8)	-1650.67100521	0.39495512
8b (NH ₂)	-1650.65693774	0.395236495
8b (H ₂ O)	-1145.06200849	0.27695320
16a (C-8)	-1651.3283071	0.404471863
16a (NH ₂)	-1651.32844354	0.402884596
16a (H ₂ O)	-1145.72246809	0.28600621
16b (C-8)	-1651.32600299	0.403547346
16b (NH ₂)	-1651.3371982	0.403855192
16b (H ₂ O)	-1145.72051678	0.28704936
(-)		
7a (C-8)	-1651.88299584	0.417710204
7a (NH₂)	-1651.86827323	0.417900402
7a (H ₂ O)	-1146.27112987	0.29957298
7b (C-8)	-1651.87907093	0.417229808
7b (NH ₂)	-1651.86490254	0.417567066
7b (H₂O)	-1146.27204003	0.29877886
10a (C-8) <i>E</i>	-1651.85231646	0.415067046
10a (NH ₂) E	-1651.83920157	0.416157251
10a (H₂O) <i>E</i>	-1146.24682062	0.29707591
10a (C-8) Z	-1651.86525959	0.415255283
10a (NH ₂) Z	-1651.84323529	0.4157396
10a (H ₂ O) Z	-1146.24823742	0.29637590
10b (C-8) <i>E</i>	-1651.84671053	0.41517489
10b (NH ₂) E	-1651.83857823	0.416339605
10b (H ₂ O) E	-1146.23592254	0.29662100
10b (C-8) Z	-1651.86311018	0.415350382
10b (NH ₂) Z	-1651.83766576	0.416222938
10b (H ₂ O) Z	-1146.25263412	0.29749944
· · · · · · · · · · · · · · · · · · ·		

Table S6. The single point and zero point vibrational energies (ZPE) of the structurally optimized molecules in
Hartrees (a.u.). The molecular structures are shown in Schemes S6.