10.1071/CH12081\_AC Copyright CSIRO 2012 Australian Journal of Chemistry 65(5), 490-495.

## **Supplementary Material**



**Figure S1.** UV-Vis absorption spectra of 10  $\mu$ M curcumin in acetonitrile (3 mL) with 3  $\mu$ L of water over 15 h. All spectra overlap well with no sign of decomposition.



**Figure S2.** UV-Vis absorption spectra of 10  $\mu$ M curcumin in acetonitrile in the presence of 20  $\mu$ M tetrakis(acetonitrile)copper(I)hexafluorophosphate over 10 h. All spectra overlap well with no sign of decomposition.



**Figure S3.** UV-Vis absorption spectra of 10  $\mu$ M curcumin in acetonitrile with increasing concentration of tetrakis(acetonitrile)copper(I)hexafluorophosphate from 0 to 20  $\mu$ M. All spectra overlap well with no significant spectral shift. The arrow indicates the small absorbance decrease occurring with increasing [Cu(I)].



**Figure S4.** Fluorescence spectra of 10  $\mu$ M curcumin in acetonitrile in the presence of 0 – 10  $\mu$ M tetrakis(acetonitrile)copper(I)hexafluorophosphate with excitation wavelength of 417 nm. The addition of Cu(I) has a minor effect on the fluorescence of curcumin signifying a weak interaction. The arrow indicates the small fluorescence decrease occurring with increasing [Cu(I)].



**Figure S5.** UV-Vis absorption spectra of 10  $\mu$ M curcumin in acetonitrile with increasing concentration of CuSO<sub>4</sub> from 0 to 30  $\mu$ M. There is a significant blue shift with increasing CuSO<sub>4</sub> concentration. The arrow indicates the significant absorbance decrease occurring with increasing [Cu(II)].



**Figure S6.** Fluorescence spectra of 10  $\mu$ M curcumin in acetonitrile in the presence of 0 – 30  $\mu$ M CuSO<sub>4</sub> with excitation wavelength of 415 nm. The arrow indicates the significant fluorescence decrease occurring with increasing [Cu(II)].



**Figure S5.** Mass spectra of 10  $\mu$ M curcumin in acetonitrile at 0 hr (top), 6 hrs (middle), and 24 hrs (bottom). The results show that curcumin (m/z = 367.1) is the most abundant species throughout, indicating the absence of any degradation. Note that the m/z = 183.1 peak corresponds to doubly charged curcumin.



**Figure S6.** Mass spectra of 10  $\mu$ M curcumin in acetonitrile at 0 h with the following Cu(II) concentrations: 0  $\mu$ M (top), 20  $\mu$ M (middle), and 100  $\mu$ M (bottom).



**Figure S7.** HPLC chromatograms of 10  $\mu$ M curcumin in acetonitrile at (a) 0 h, (b) 6 h, and (c) 24 h after equilibration are identical within experimental error, showing that the level of degradation is negligible.