Supplementary Material

Figure S1. UV-Vis absorption spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile (3 mL) with $3 \mu \mathrm{~L}$ of water over 15 h . All spectra overlap well with no sign of decomposition.

Figure S2. UV-Vis absorption spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile in the presence of $20 \mu \mathrm{M}$ tetrakis(acetonitrile)copper(I)hexafluorophosphate over 10 h . All spectra overlap well with no sign of decomposition.

Figure S3. UV-Vis absorption spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile with increasing concentration of tetrakis(acetonitrile)copper(I)hexafluorophosphate from 0 to $20 \mu \mathrm{M}$. All spectra overlap well with no significant spectral shift. The arrow indicates the small absorbance decrease occurring with increasing $[\mathrm{Cu}(\mathrm{I})]$.

Figure S4. Fluorescence spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile in the presence of $0-10 \mu \mathrm{M}$ tetrakis(acetonitrile)copper(I)hexafluorophosphate with excitation wavelength of 417 nm . The addition of $\mathrm{Cu}(\mathrm{I})$ has a minor effect on the fluorescence of curcumin signifying a weak interaction. The arrow indicates the small fluorescence decrease occurring with increasing $[\mathrm{Cu}(\mathrm{I})]$.

Figure S5. UV-Vis absorption spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile with increasing concentration of CuSO_{4} from 0 to $30 \mu \mathrm{M}$. There is a significant blue shift with increasing CuSO_{4} concentration. The arrow indicates the significant absorbance decrease occurring with increasing $[\mathrm{Cu}(\mathrm{II})]$.

Figure S6. Fluorescence spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile in the presence of $0-30 \mu \mathrm{M}$ CuSO_{4} with excitation wavelength of 415 nm . The arrow indicates the significant fluorescence decrease occurring with increasing $[\mathrm{Cu}(\mathrm{II})]$.

Figure S5. Mass spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile at 0 hr (top), 6 hrs (middle), and 24 hrs (bottom). The results show that curcumin $(m / z=367.1)$ is the most abundant species throughout, indicating the absence of any degradation. Note that the $m / z=183.1$ peak corresponds to doubly charged curcumin.

Figure S6. Mass spectra of $10 \mu \mathrm{M}$ curcumin in acetonitrile at 0 h with the following Cu (II) concentrations: $0 \mu \mathrm{M}$ (top), $20 \mu \mathrm{M}$ (middle), and $100 \mu \mathrm{M}$ (bottom).

Figure S7. HPLC chromatograms of $10 \mu \mathrm{M}$ curcumin in acetonitrile at (a) 0 h , (b) 6 h , and (c) 24 h after equilibration are identical within experimental error, showing that the level of degradation is negligible.

