10.1071/CH12316_AC

©CSIRO 2012

Australian Journal of Chemistry 2012, 65(11), 1502–1506

Supplementary Material

Role of cation in enhancing the conversion of the Alzheimer's peptide into amyloid fibrils using protic ionic liquids

Natalie Debeljuh^b, Swapna Varghese^a, Colin J. Barrow^b and Nolene Byrne^{a*}

Analysis of CD spectra: K2d Analysis software^{1,2}

Table 1a: Abeta1-42 in EAMS

	Protic Ionic Liquid Composition			
Structural characterisation	10% EAMS	30% EAMS	50% EAMS	70% EAMS
Alpha helix (%)	8	9	23	31
Beta sheet (%)	44	43	27	15
Random coil (%)	48	48	50	54

Table 1b: Abeta1-42 in TEAMS

	Protic Ionic Liquid Composition			
Structural characterisation	10% TEAMS	30% TEAMS	50% TEAMS	70% TEAMS
Alpha helix (%)	9	13	20	25
Beta sheet (%)	40	32	25	19
Random coil (%)	51	55	55	56

Table 2a: Abeta11-42 in EAMS

		Protic Ionic Liqu	otic Ionic Liquid Composition	
Structural characterisation	10% EAMS	30% EAMS	50% EAMS	70% EAMS
Alpha helix (%)	2	5	28	28
Beta sheet (%)	51	47	25	36
Random coil (%)	47	47	48	37

Table 2b: Abeta11-42 in TEAMS

	Protic Ionic Liquid Composition			
Structural characterisation	10% TEAMS	30% TEAMS	50% TEAMS	70% TEAMS
Alpha helix (%)	12	13	30	38
Beta sheet (%)	40	39	21	8
Random coil (%)	48	48	50	54

Table 3a: Abeta3-42 in EAMS

	Protic Ionic Liquid Composition			
Structural characterisation	10% EAMS	30% EAMS	50% EAMS	70% EAMS
Alpha helix (%)	5	4	6	37
Beta sheet (%)	48	48	47	12
Random coil (%)	48	48	47	51

Table 3b: Abeta11-42 in TEAMS

	Protic Ionic Liquid Composition			
Structural characterisation	10% TEAMS	30% TEAMS	50% TEAMS	70% TEAMS
Alpha helix (%)	20	20	32	29
Beta sheet (%)	27	29	16	15
Random coil (%)	53	51	52	55

Figure S1: Fluorescence emission of the intrinsic Trp residue as at 10wt%EAMS and 10wt%TEAMS with and without peptide.

Figure S2: Fluorescence emission of the intrinsic Trp residue as at 30wt%EAMS 10wt%TEAMS with and without peptide.

Figure S3: Fluorescence emission of the intrinsic Trp residue as at 50wt%EAMS and 10wt%TEAMS with and without peptide.

Figure S4: Fluorescence emission of the intrinsic Trp residue as at 70wt%EAMS and 10wt%TEAMS with and without peptide.

1) Merelo, J.J., M.A. Andrade, A. Prieto and F. Morán. 1994. Proteinotopic Feature Maps. Neurocomputing. **6**, 443-454

2) Andrade, M.A., P. Chacón, J.J. Merelo and F. Morán. 1993. Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Prot. Eng. **6**, 383-390