10.1071/CH12428_AC ©CSIRO 2013 Australian Journal of Chemistry **2013**, **66(6)**, **661-666**

Supplementary Material

Water Assisted Organocatalysis: An Enantioselective Green Protocol for Henry Reaction

Prashant B. Thorat, Santosh V. Goswami, Wamanrao N. Jadhav and Sudhakar R. Bhusare* Department of Chemistry, Dnyanopasak College, Parbhani-431 401, MS, India E-mail: <u>bhusare71@yahoo.com</u>

General details

All solvents were used as commercial anhydrous grade without further purification. The column chromatography was carried out over silica gel (100–120 mesh). Optical rotations were measured on a Polax-2L digital polarimeter. Melting points were determined in open capillary tube and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Bruker 300 MHz spectrometer in CDCl₃ solvent. Mass spectra were taken on Polaris-Q Thermoscintific GC-MS. Entiomeric purity is determined on PerkinElmer Series 200 HPLC Systems.

General procedure for synthesis of Henry reaction

Aromatic aldehydes (2 mmole) was added in solution of nitromethane (4 mmole) in distilled water (20 mL) and 0.12 mmole of organocatalyst (*S*)-*N*-(4-fluorophenyl)-1-tosylpyrrolidine-2-carboxamide. The reaction mixture was stirred for appropriate time at room temperature. Progress of reaction was monitored with thin layer chromatography. After completion of reaction as indicated by TLC, 25mL cool distilled water was added to it. This reaction mixture was then extracted with dichloromethane (15mL x 3). Solvent was removed under *vacuo*, to obtain crude product. The crude mixture was purified with silica gel column chromatography. Spectral data of all compounds is compared to those reported in literature^{1, 2} and, it is well in agreement with structure.

(S)-2-Nitro-1-(4-nitrophenyl) ethanol (10a)

The product is characterized by comparing the Spectral data, HPLC data and melting point data with those reported in the literature [1]. White solid, M. P. 83-85 °C, $[\alpha]_D^{20}$: +26.0 (c 1.10, CH₂Cl₂)^[3a], ¹H NMR (300 MHz, CDCl₃): δ 7.63-7.78 (m, 2H), 7.29-7.46 (m, 2H), 4.60 (m, 1H,), 4.22 (m, 1H), 3.79 (m, 1H), 3.21 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): δ 157.33, 156.71, 124.52, 121.52, 119.00, 75.68; GC-MS: *m*/*z* 212.21 (M+); Elemental Analysis for C₈H₈N₂O₅: Calculated C, 45.29; H, 3.80; N, 13.20; O, 37.71; Found C, 45.31; H, 3.78; N, 13.22; O, 37.70.

HPLC: 92 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 1:4, Flow rate 1.0 mL/min, $\lambda = 205$ nm; t_R (minor) = 11.4 min, t_R (major) = 13.8 min].

(S)-1-(4-Flourophenyl)-2-nitroethanol (10b)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [2]. Yellow oil, $[\alpha]_D{}^{20}$: +28.6 (c 2.1, CHCl₃)^[3c], ¹H NMR (300 MHz, CDCl₃): δ 8.03-8.10 (m, 2H), 7.67-7.72 (m, 2H), 4.66 (m, 1H,), 4.31 (m, 1H), 3.82 (m, 1H), 3.24 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): δ 162.91, 153.65, 122.56, 121.78, 110.98, 76.11; GC-MS: *m*/*z* 185.22 (M+); Elemental Analysis for C₈H₈N₂O₅: Elemental Analysis for C₈H₈FNO₃ :Calculated C, 51.90; H, 4.36; F, 10.26; N, 7.56; O, 25.92; Found C, 51.87; H, 4.38; F, 10.27; N, 7.58; O, 25.90.

HPLC: 94 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 210$ nm; t_R (minor) = 11.1 min, t_R (major) = 19.1 min].

(S)-2-Nitro-1-(3-nitrophenyl) ethanol (10c)

The product is characterized by comparing the Spectral data, HPLC data and melting point data with those reported in the literature [2]. White solid, M. P. 83-85 °C, $[\alpha]_D^{20}$: +28.0 (c 0.8, CH₂Cl₂)^[3a], ¹H NMR (**300** MHz, CDCl₃): δ 7.23-7.37 (m, 3H), 7.11-7.19 (m, 1H), 4.54 (m, 1H,), 4.27 (m, 1H), 3.77 (m, 1H), 3.22 (bs, 1H, OH); ¹³C-NMR (**300** MHz, CDCl₃): δ 158.17, 150.76, 125.39, 124.23, 122.85, 108.37, 74.86; GC-MS: *m*/*z* 212.14 (M+); Elemental Analysis forC₈H₈N₂O₅: C, 45.29; H, 3.80; N, 13.20; O, 37.71; Found C, 45.27; H, 3.79; N, 13.19; O, 37.69.

HPLC: 91 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 210$ nm; t_R (minor) = 21.5 min, t_R (major) = 22.7 min].

(S)-1-(4-Chlorophenyl)-2-nitroethanol (10d)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [2]. Yellow oil, $[\alpha]_D^{20}$: +42.0 (c 1.10, CH₂Cl₂)^[3a], ¹H NMR (300 MHz, CDCl₃): δ 7.42–7.32 (m, 4H), 4.64 (m, 1H), 4.44 (m, 2H), 3.90 (m, 1H), 3,31 (br s,

1H, OH); ¹³C-NMR (**300** MHz, CDCl₃): δ 143.21, 134.86, 133.27, 130.19, 94.91, 73.38; GC-MS: *m*/*z* 201.04 (M+); Elemental Analysis for C₈H₈ClNO₃: Calculated C, 47.66; H, 4.00; Cl, 17.59; N, 6.95; O, 23.81; Found C, 47.67; H, 4.02; Cl, 17.58; N, 6.94; O, 23.83.

HPLC: 89 % *ee*. [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 210$ nm; t_R (minor) = 6.3 min, t_R (major) = 18.3 min].

(S)-1-(2-Chlorophenyl)-2-nitroethanol (10e)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [1]. Yellow oil, $[\alpha]_D^{20}$: +23.8 (c 1.10, CH₂Cl₂)^[3a], ¹H NMR (300 MHz, CDCl₃): δ 6.78-6.83 (m, 1H), 6.26-6.37 (m, 3H), 4.77 (m, 1H), 4.26 (m, 1H), 3.71 (m, 1H), 3.19 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): δ 140.21, 131.74, 123.48, 122.43, 111.07, 71.26; GC-MS: *m*/*z* 212.46 (M+); Elemental Analysis for C₈H₈ClNO₃: Calculated C, 47.66; H, 4.00; Cl, 17.59; N, 6.95; O, 23.81; Found C, 47.63; H, 3.98; Cl, 17.61; N, 6.99; O, 23.79.

HPLC: 88 % *ee*. [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2.5:97.5, Flow rate 1.0 mL/min, $\lambda = 205$ nm; t_R (minor) = 13.5 min, t_R (major) = 17.2 min].

(S)-1-(2-Bromophenyl)-2-nitroethanol (10f)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [1]. Yellow oil, $[\alpha]_D{}^{20}$: -27.3 (c 1.10, CH₂Cl₂)^[3b], ¹H NMR (300 MHz, CDCl₃): δ 7.68-7.81 (m, 1H), 6.87-7.06 (m, 3H), 5.19 (bs, 1H, OH), 4.71 (m, 1H), 4.32 (m, 1H), 3.90 (m, 1H); ¹³C-NMR (300 MHz, CDCl₃): δ 142.73, 131.96, 130.33, 128.00, 123.89, 66.46; GC-MS: *m*/*z* 246 (M+); Elemental Analysis for C₈H₈BrNO₃: C, 39.05; H, 3.28; Br, 32.47; N, 5.69; O, 19.51; Found C, 39.03; H, 3.31; Br, 32.44; N, 5.71; O, 19.53.

HPLC: 87 % *ee*. [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 5:95, Flow rate 1.0 mL/min, $\lambda = 205$ nm; t_R (minor) = 12.4 min, t_R (major) = 13.5 min].

(S)-4-(1-Hydroxy-2-nitroethyl) phenol (10g)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [2]. Yellow oil, $[\alpha]_D{}^{20}$: +25.8 (c 1.10, CH₂Cl₂), ¹H NMR (300 MHz, CDCl₃): δ 9.81 (bs, 1H, OH), 7.73-7.89 (m, 2H), 7.29-7.48 (m, 2H), 5.27 (bs, 1H, OH), 4.51 (m, 1H), 4.70 (m, 1H), 4.09 (t, 1H); ¹³C-NMR (300 MHz, CDCl₃): δ 159.27, 145.16, 138.46, 132.00, 119.79, 73.41. GC-MS: *m*/*z* 183 (M+); Elemental Analysis for C₈H₉NO₄: C, 52.46; H, 4.95; N, 7.65; O, 34.94; Found C, 52.43; H, 4.98; N, 7.63; O, 34.91; HPLC: 89 % *ee*. [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 205$ nm; t_R (minor) = 29.8 min, t_R (major) = 40.8 min].

(S)-1-(2-Methoxyphenyl)-2-nitroethanol (10h)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [1]. Yellow oil, $[\alpha]_D{}^{20}$: +36.6 (c 1.8, CHCl₃)^[3c], ¹H NMR (300 MHz, CDCl₃): δ 7.43 (m, 1H), 7.29-7.36 (m, 1H), 6.90-7.04 (m, 2H), 4.85 (m, 1H), 4.67 (m, 1H), 4.52 (m, 1H), 3.88 (s, 3H), 3.29 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): δ 158.71, 140.89, 131.20, 120.11, 114.34, 108.73, 93.45, 78.06, 67.55, 54.77; GC-MS: *m/z* 197.11 (M+); Elemental Analysis for C₉H₁₁NO₄: C, 54.82; H, 5.62; N, 7.10; O, 32.46; Found C, 54.80; H, 5.64; N, 7.13; O, 32.45.

HPLC: 94 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 205$ nm; t_R (minor) = 11.2 min, t_R (major) = 13.2 min].

(S)-1-(4-Methoxyphenyl)-2-nitroethanol (10i)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [2]. Yellow oil, $[\alpha]_D{}^{20}$: +19.0 (c 2.1, CHCl₃)^[3c], ¹H NMR (300 MHz, CDCl₃): δ 7.12-7.21 (m, 2H), 7.25-7.33 (m, 2H), 4.76 (m, 1H), 4.53 (m, 1H), 3.79 (s, 3H), 3.23 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): 156.93, 129.82, 125.44, 125.38, 112.73, 89.37, 70.47, 54.57; GC-MS: m/z 197.07 (M+); Elemental Analysis for C₉H₁₁NO₄: C, 54.82; H, 5.62; N, 7.10; O, 32.46; Found C, 54.79; H, 5.65; N, 7.08; O, 32.48. HPLC: 88 % *ee*. [Determined by chiral HPLC using chiralcel OB-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 205$ nm; t_R (minor) = 25.0 min, t_R (major) = 25.6 min].

(S)-1-Phenyl-2-nitroethanol (10j)

The product is characterized by comparing the Spectral data and HPLC data with those reported in the literature [2]. Colorless oil, $[\alpha]_D$: +23.7 (c 1.10, CH₂Cl₂)^[3a], ¹H NMR (300 MHz, CDCl₃): δ 6.67-6.79 (m, 4H), 4.69 (m, 1H), 4.62 (m, 1H), 3.74 (s, 3H), 3.17 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): 139.81, 128.23, 128.11, 84.82, 69.77; GC-MS: *m/z* 167.05 (M+); Elemental Analysis for C₈H₉NO₃: C, 57.48; H, 5.43; N, 8.38; O, 28.71; Found C, 57.49; H, 5.45; N, 8.41; O, 28.69.

HPLC: 90 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 1:9, Flow rate 1.0 mL/min, $\lambda = 205$ nm; t_R (minor) = 13.7 min, t_R (major) = 16.9 min].

(S)-1-(4-Bromophenyl)-2-nitroethanol (10k)

The product is characterized by the Spectral data and HPLC data with those reported in the literature [6].Colorless oil, $[\alpha]_D$: +68.4 (c 1.40, CHCl₃)^[4], ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.47 (m, 2H), 7.18–7.22 (m, 2H), 4.81 (m, 1H), 4.66 (m, 1H), 4.52 (m, 1H), 3.74 (s, 3H), 3.17 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): 138.11, 131.82, 127.12, 123.11,

81.24, 71.20; **GC-MS:** *m*/*z* 246.07 (M+); **Elemental Analysis for C₈H₈BrNO₃:** C, 39.05; H, 3.28; Br, 32.47; N, 5.69; O, 19.51; Found C, 39.03; H, 3.30; Br, 32.49; N, 5.71; O, 19.53.

HPLC: 89 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 15:85, Flow rate 0.8 mL/min, $\lambda = 215$ nm; t_R (minor) = 13.8 min, t_R (major) = 17.4 min].

(S)-2-(1-hydroxy-2-nitroethyl) phenol (10l)

The product is characterized by analogy with the Spectral data and HPLC data with those reported in the literature. Yellow oil, $[\alpha]_D{}^{20}$: +25.7 (c 1.10, CH₂Cl₂), ¹H NMR (300 MHz, CDCl₃): δ 10.18 (bs, 1H, OH), 7.14-7.21 (m, 2H), 6.89-6.94 (m, 2H), 4.74 (m, 1H), 4.66 (m, 1H), 4.34 (m, 1H) 3.21 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): δ 154.23, 131.45, 128.39, 125.31, 117.87, 71.25. GC-MS: *m*/*z* 183.03 (M+); Elemental Analysis for C₈H₉NO₄: C, 52.46; H, 4.95; N, 7.65; O, 34.94; Found C, 52.43; H, 4.98; N, 7.63; O, 34.91; HPLC: 92 % *ee*. [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, λ = 205 nm; t_R (minor) = 32.6 min, t_R (major) = 41.4 min].

(S)-1-Nitro-3-phenylpropan-2-ol (10m)

The product is characterized by the Spectral data and HPLC data with those reported in the literature [5].Colorless oil, $[\alpha]_D{}^{20}$: -21.9 (c 1.9, CH₂Cl₂)^[5], ¹H NMR (300 MHz, CDCl₃): δ 7.15 (m, 5H), 4.67 (m, 1H), 4.55 (m, 1H), 4.41 (m, 1H), 2.89 (m, 1H), 2.81 (m, 1H), 2.60 (bs, 1H, OH). ¹³C-NMR (300 MHz, CDCl₃): δ 135.89, 1228.74, 128.04, 126.81, 80.59, 70.34, 42.65; GC-MS: *m*/*z* 181.20 (M+); Elemental Analysis for C₉H₁₁NO₃: C, 59.66; H, 6.12; N, 7.73; O, 26.49; Found C, 59.64; H, 6.14; N, 7.69; O, 26.52;

HPLC: 76 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 10:90, Flow rate 0.5 mL/min, $\lambda = 215$ nm; t_R (minor) = 30.8 min, t_R (major) = 36.9 min].

(S)- 1-Nitro-4-phenyl-but-3-en-2-ol (10n)

The product is characterized by the Spectral data and HPLC data with those reported in the literature [2]. Colorless oil, $[\alpha]_D{}^{20}$: +22.6 (c 1.8, CH₂Cl₂)^[2], ¹H NMR (300 MHz, CDCl₃): δ 7.17-7.39 (m, 5H), 6.74 (m, 1H), 6.34 (m, 1H), 4.89 (m, 1H), 4.69 (m, 1H), 4.54 (m, 1H), 3.01 (bs, 1H, OH); ¹³C-NMR (300 MHz, CDCl₃): δ 136.32, 132.44, 130.11, 128.56, 127.69, 125.97, 80.34, 71.19 GC-MS: *m*/*z* 193.20 (M+); Elemental Analysis for C₁₀H₁₁NO₃: C, 62.17; H, 5.74; N, 7.25; O, 24.84; Found C, 62.20; H, 5.77; N, 7.23; O, 24.82;

HPLC: 81 % *ee.* [Determined by chiral HPLC using chiralcel OD-H, IPA/Hexane 2:8, Flow rate 0.8 mL/min, $\lambda = 215$ nm; t_R (minor) = 12.5 min, t_R (major) = 16.8 min].

(S)-2-Nitro-1-cyclohexylethanol (10o)

The product is characterized by the Spectral data and HPLC data with those reported in the literature [6]. Colorless oil, $[\alpha]_D^{20}$: +16.5 (c 0.6, CH₂Cl₂)^[6], ¹H NMR (300 MHz, CDCl₃): δ

4.49 (m, 2H), 4.38 (m, 1H), 4.14 (m, 1H), 2.78 (bs, 1H, OH), 1.81-1.97 (m, 5H), 1.62-1.71 (m, 1H), 1.33-1.52 (m, 5H), ¹³C-NMR (**300** MHz, CDCl₃): δ 80.34, 70.76, 42.17, 30.24, 28.75, 26.22, 25.87; GC-MS: *m*/*z* 173.19 (M+); Elemental Analysis for C₈H₁₅NO₃: C, 55.47; H, 8.73; N, 8.09; O, 27.71; Found C, 55.49; H, 8.75; N, 8.11; O, 27.73;

HPLC: 70 % *ee.* [Determined by chiral HPLC using chiralcel AD-H, IPA/Hexane 3:97 v/v, Flow rate 0.8 mL/min, $\lambda = 215$ nm; t_R (minor) = 12.0 min, t_R (major) = 14.2 min].

(S)-3-Methyl-1-nitrobutan-2-ol (10p)

The product is characterized by the Spectral data and HPLC data with those reported in the literature [6].Colorless oil, $[\alpha]_D{}^{20}$: +20.1 (c 1.0, CH₂Cl₂)^[6], ¹H NMR (**300** MHz, CDCl₃): δ 4.57 (m, 2H), 4.38 (m, 1H), 4.15 (m, 1H), 3.01 (bs, 1H, OH), 1.78 (m, 1H), 0.96-1.05 (m, 6H); ¹³C-NMR (**300** MHz, CDCl₃): δ 79.83, 74.26, 32.19, 19.11, 18.37; GC-MS: *m/z* 133.15 (M+); Elemental Analysis for C₅H₁₁NO₃: C, 45.10; H, 8.33; N, 10.52; O, 36.05; Found C, 45.07; H, 8.31; N, 10.50; O, 36.03.

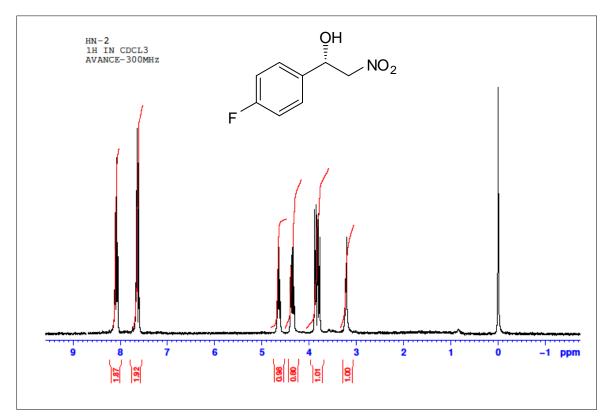
HPLC: 65 % *ee*. [Determined by chiral HPLC using Chiralcel OD-H, IPA/Hexane 3:97 v/v, Flow rate 0.6 mL/min, $\lambda = 215$ nm; t_R (minor) = 27.8 min, t_R (major) = 30.1 min].

(S)-4-Methyl-1-nitropentan-2-ol (10q)

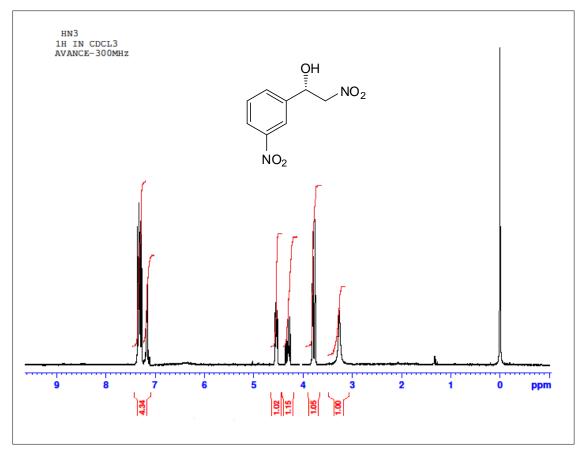
The product is characterized by the Spectral data and HPLC data with those reported in the literature [6 and 7].Colorless oil, $[\alpha]_D{}^{20}$: -2.3 (c 0.5, CH₂Cl₂)^[7], ¹H NMR (300 MHz, CDCl₃): δ 4.41 (m, 2H), 4.29 (m, 1H), 2.90 (bs, 1H, OH), 1.62 (m, 1H), 0.91-1.00 (m, 6H); ¹³C-NMR (300 MHz, CDCl₃): δ 82.14, 68.72, 43.16, 25.00, 22.94, 20.76; GC-MS: *m/z* 147.19 (M+); Elemental Analysis for C₆H₁₃NO₃: C, 48.97; H, 8.90; N, 9.52; O, 32.61; Found C, 49.00; H, 8.87; N, 9.55; O, 32.59.

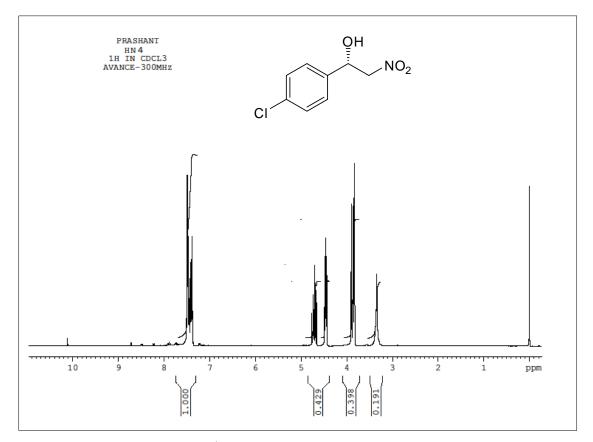
HPLC: 62 % *ee.* [Determined by chiral HPLC using Chiralcel OJ-H, IPA/Hexane 15:85 v/v, Flow rate 0.8 mL/min, $\lambda = 215$ nm; t_R (minor) = 11.5 min, t_R (major) = 14.00 min].

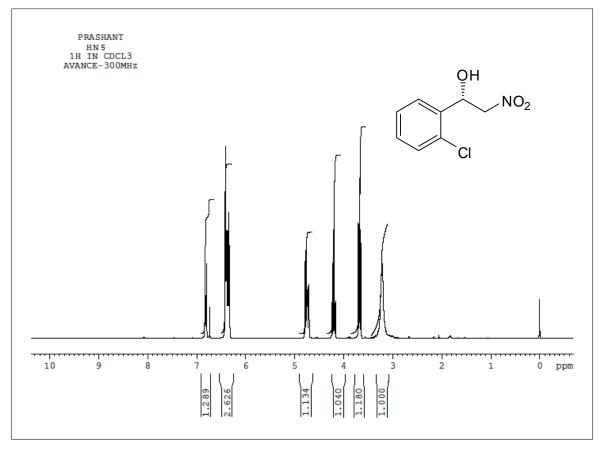
(S)-1-Nitrooctan-2-ol (10r)

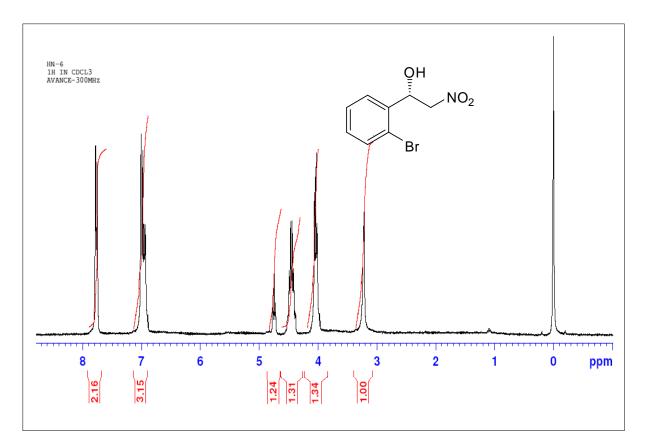

The product is characterized by the Spectral data and HPLC data with those reported in the literature [3c].]. Colorless oil, $[\alpha]_D{}^{20}$: +6.2 (c 1.5, CHCl₃)^[3c], ¹H NMR (300 MHz, CDCl₃): δ 4.48 (m, 2H), 4.34 (m, 1H), 2.84 (bs, 1H, OH), 1.51 (m, 2H), 1.18-1.30 (m, 8H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C-NMR (300 MHz, CDCl₃): δ 80.69, 69.16, 35.03, 30.89, 29.63, 24.56, 21.49, 15.43; GC-MS: *m*/*z* 175.24 (M+); Elemental Analysis for C₈H₁₇NO₃: C, 54.84; H, 9.78; N, 7.99; O, 27.39; Found C, 54.82; H, 9.81; N, 8.02; O, 27.42.

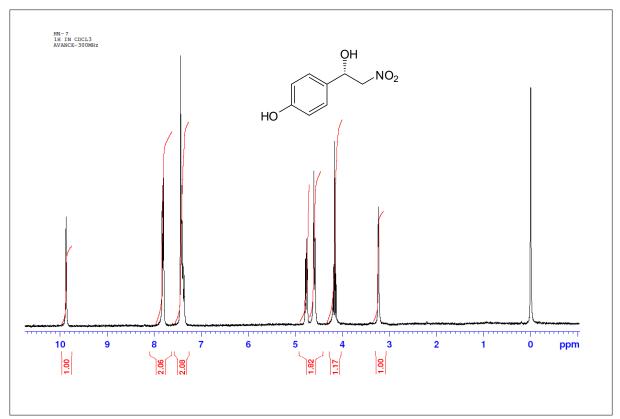
HPLC: 64 % *ee*. [Determined by chiral HPLC using Chiralcel OJ-H, IPA/Hexane 1:10 v/v, Flow rate 1.0 mL/min, $\lambda = 222$ nm; t_R (minor) = 7.8 min, t_R (major) = 11.5 min].

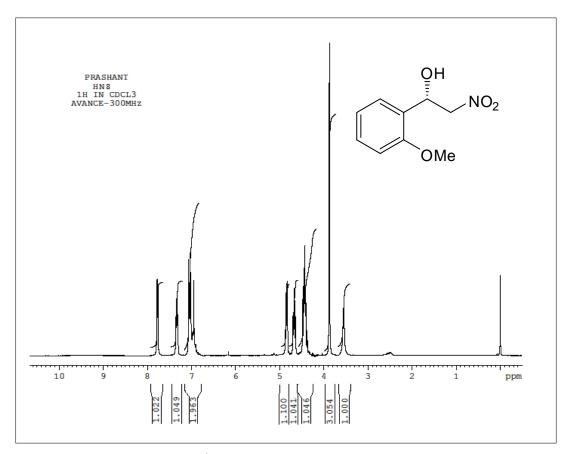


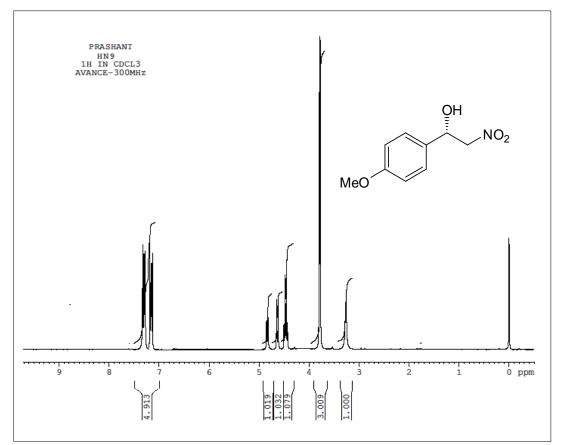

1H NMR compound 10b

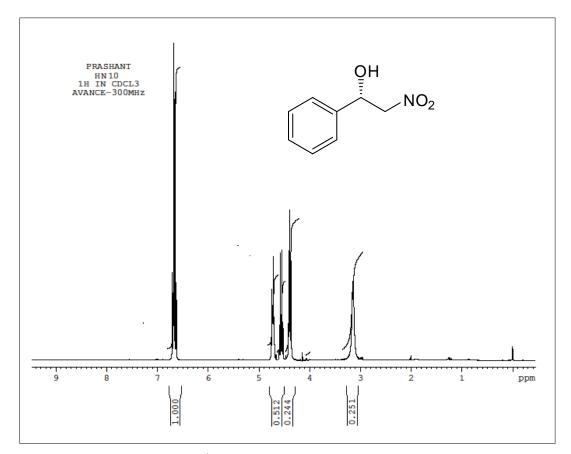

1H NMR compound 10c

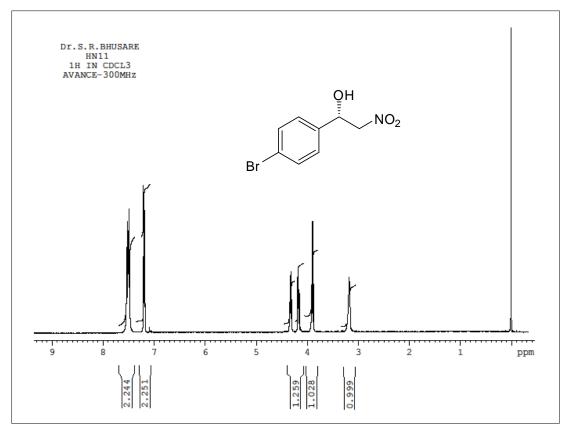

1H NMR compound 10d

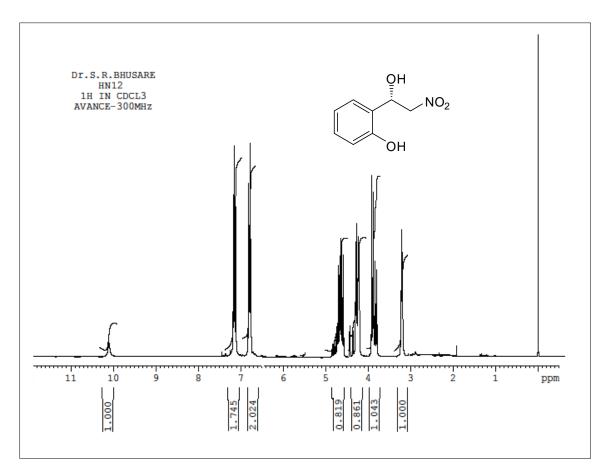


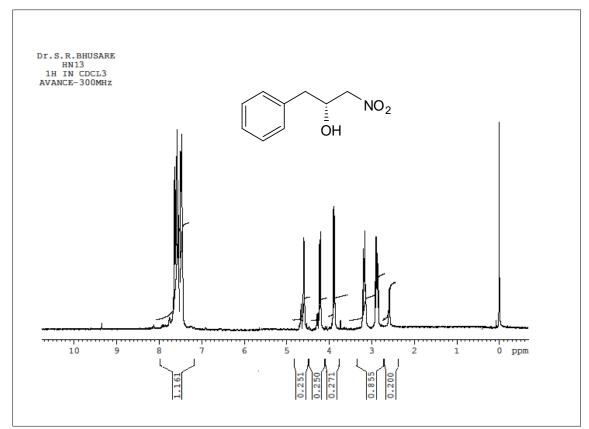

¹H NMR compound 10f

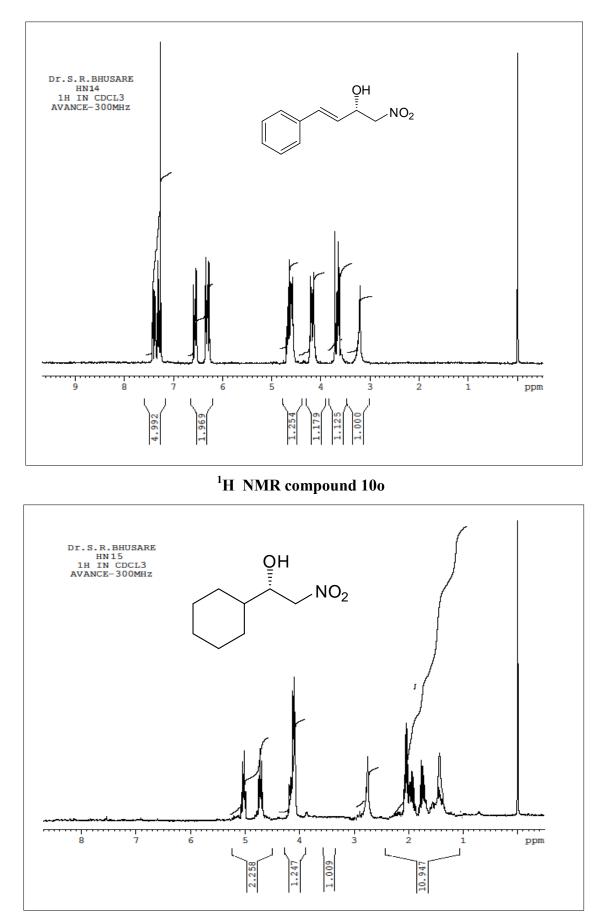

¹H NMR compound 10g

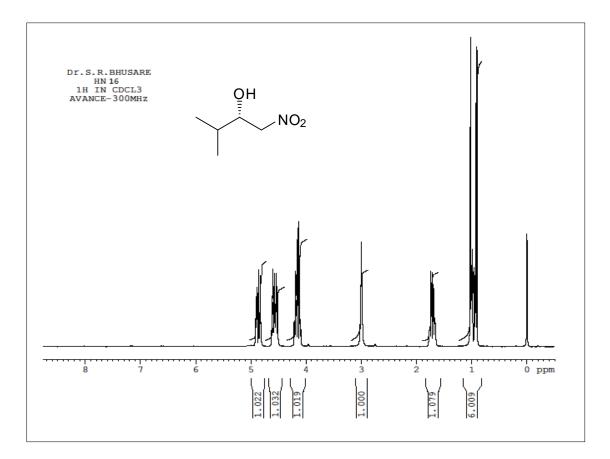

¹H NMR compound 10h

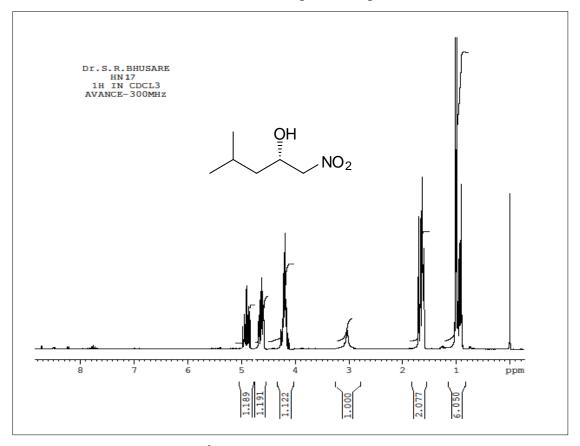

¹H NMR compound 10i


¹H NMR compound 10j

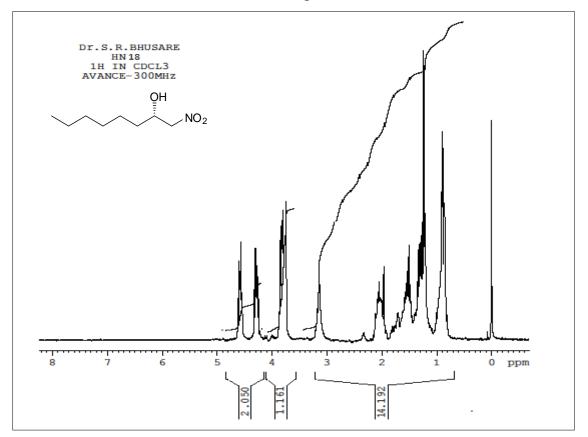

¹H NMR compound 10k


¹H NMR compound 10l

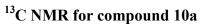

¹H NMR compound 10m

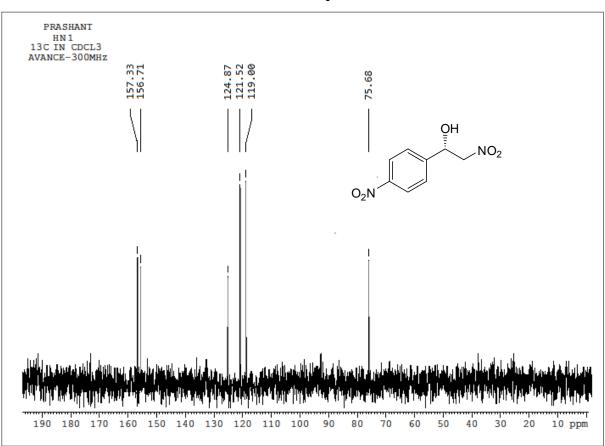


¹H NMR compound 10n

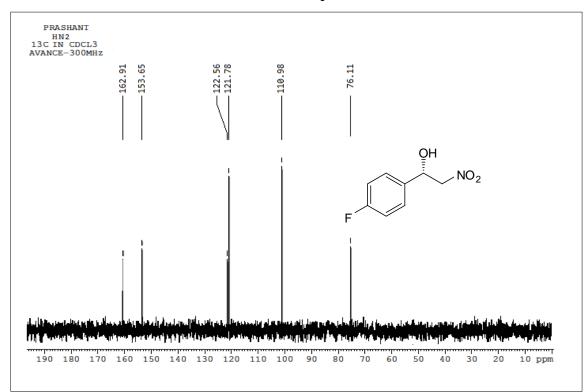


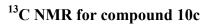
¹H NMR compound 10p

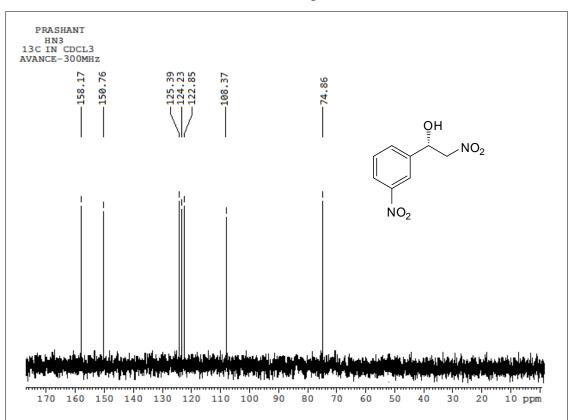


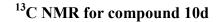


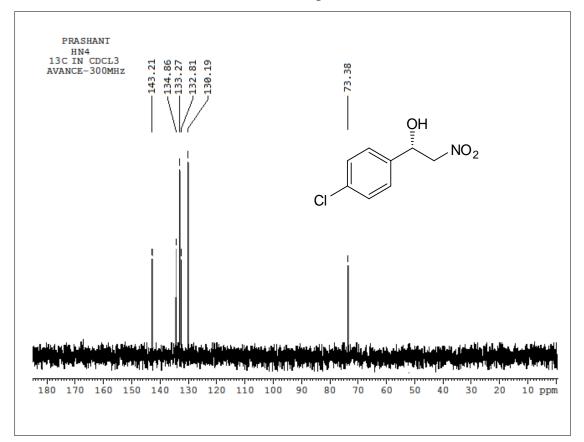
¹H NMR compound 10r

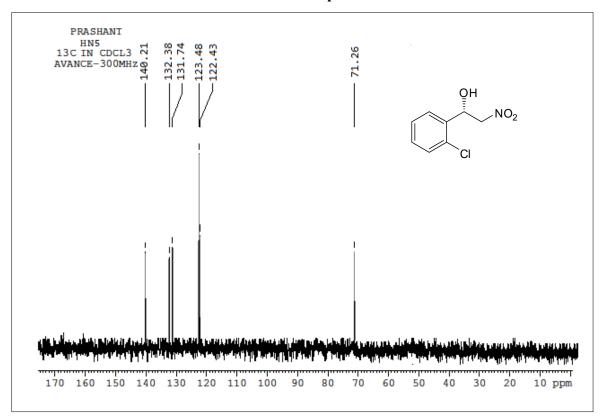


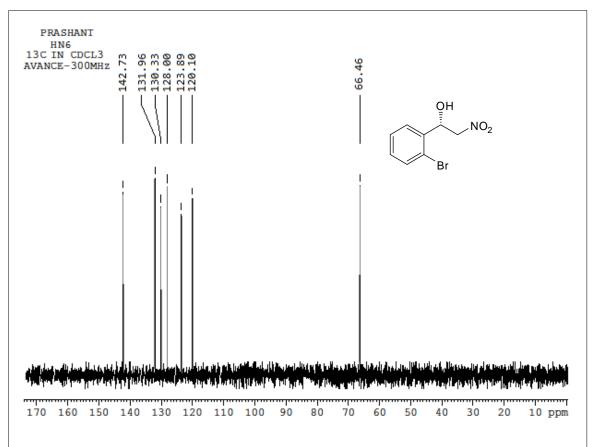

¹³C NMR

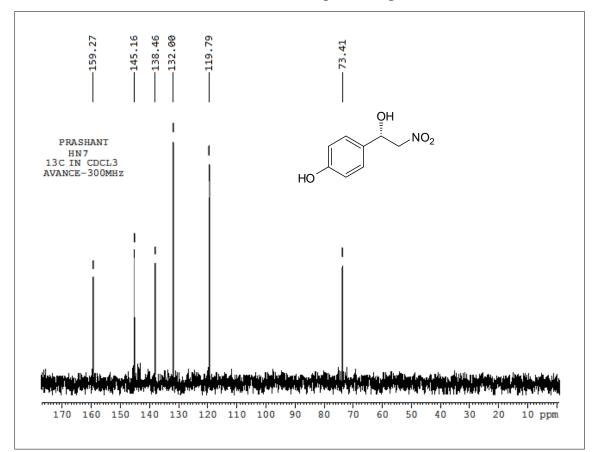


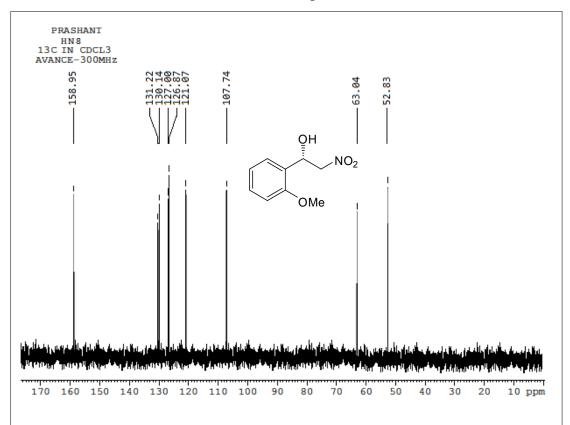


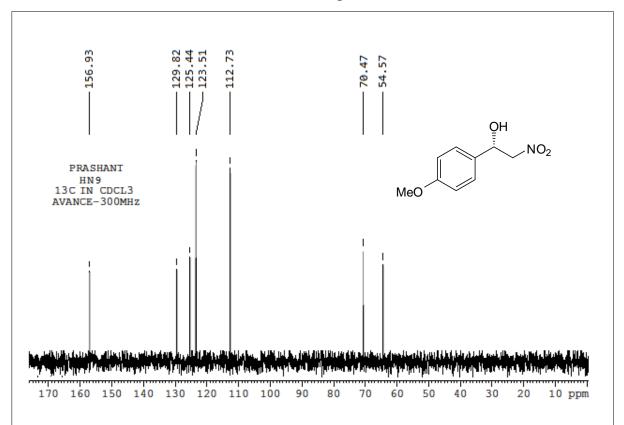

¹³C NMR for compound 10b



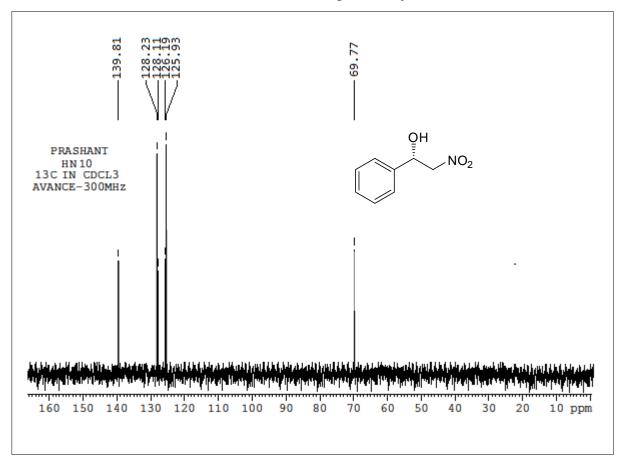


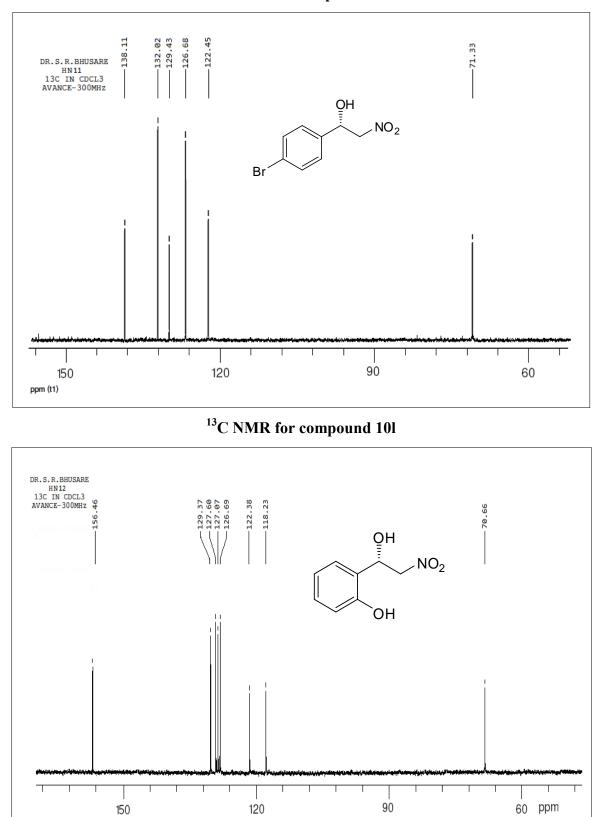

¹³C NMR for compound 10e

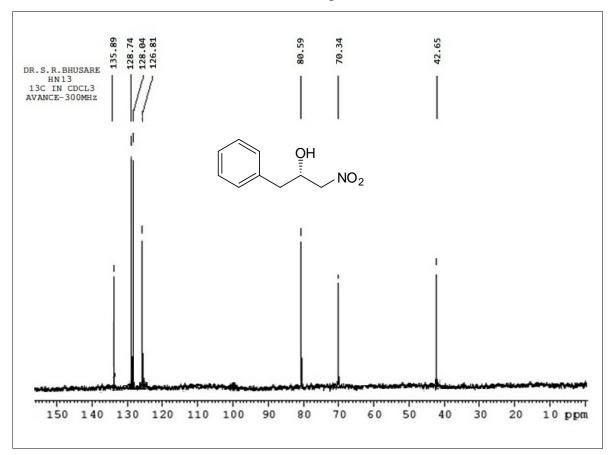

¹³C NMR for compound 10f



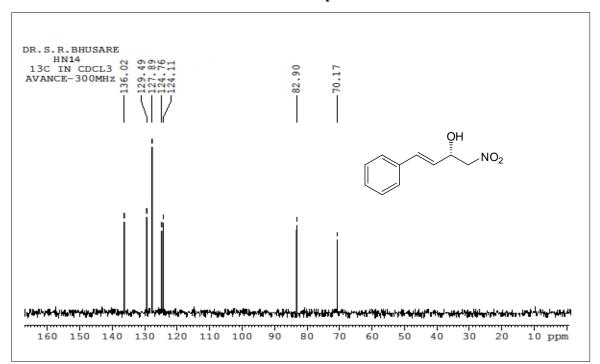
¹³C NMR for compound 10g

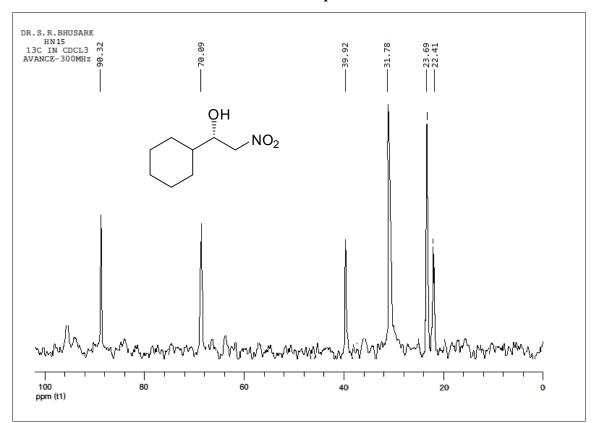


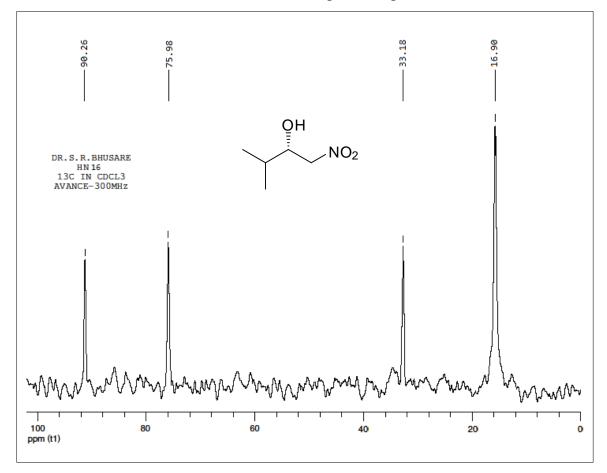

¹³C NMR for compound 10h

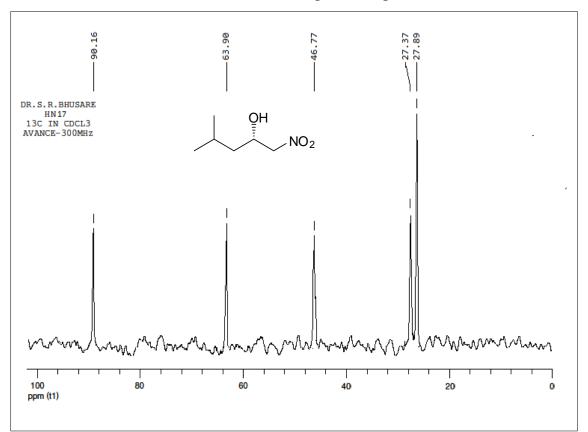


¹³C NMR for compound 10j

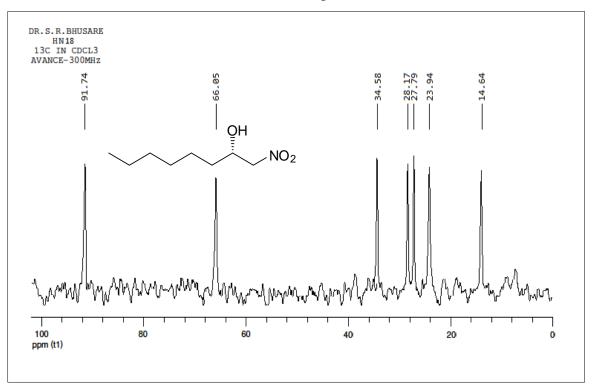



¹³C NMR for compound 10m

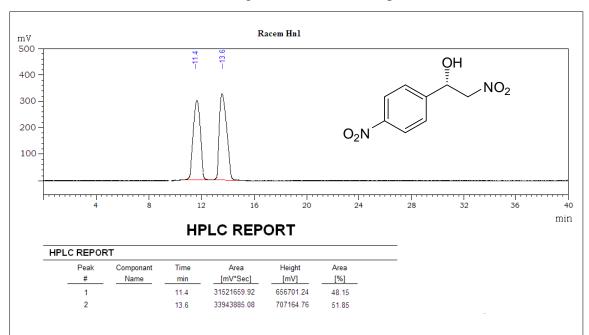

¹³C NMR for compound 10n

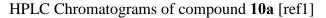


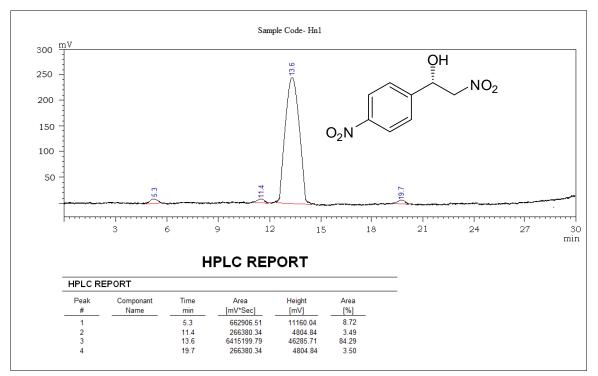
¹³C NMR for compound 10o

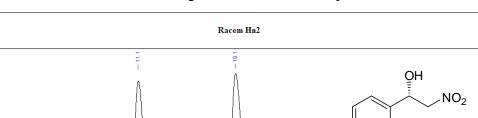


¹³C NMR for compound 10p




¹³C NMR for compound 10r




HPLC chromatograms for compounds (10a-r)

HPLC Chromatograms of racemic compound 10a

20

Height [mV] 1469756.34

1507266.83

16

HPLC REPORT

Area

[mV*Sec]

70548304.19

72348807.81

1 8

Componant

Name

HPLC REPORT

Peak

#

1

2

12

Time

min 11.1

19.1

24

Area

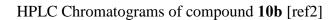
[%] 49.37

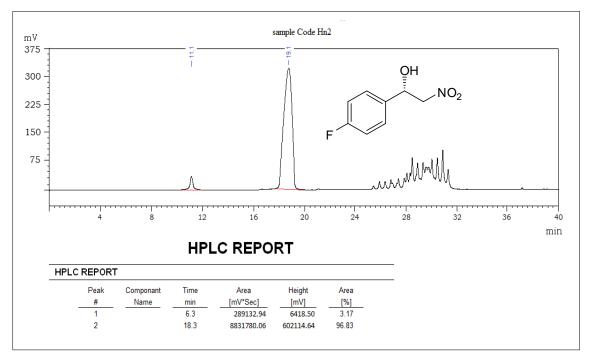
50.63

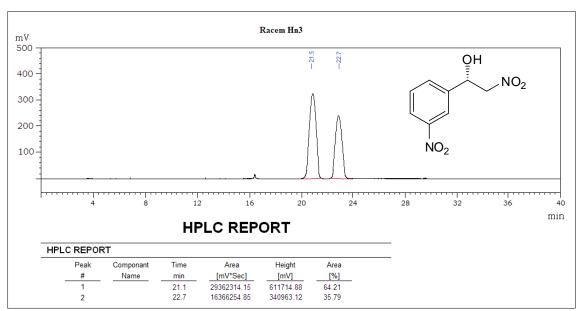
28

36

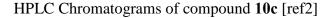
40 min

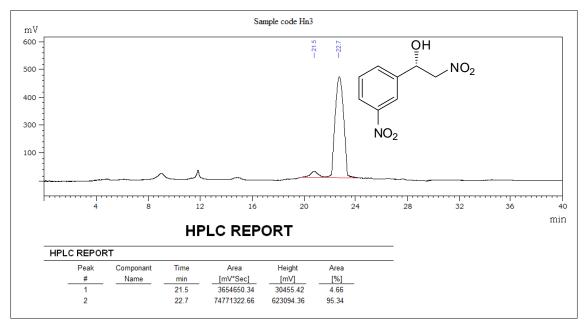

32

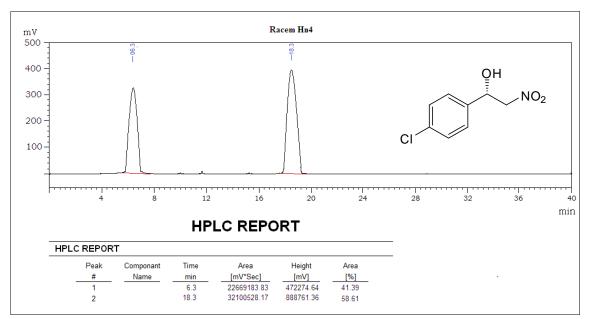

mV 500


400

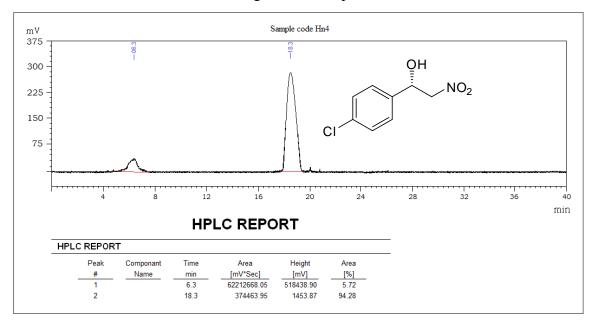
300 -200 -100 -

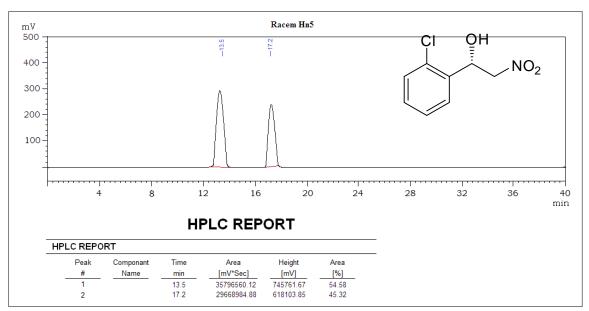

HPLC Chromatograms of Racemic compound 10b

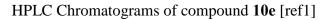


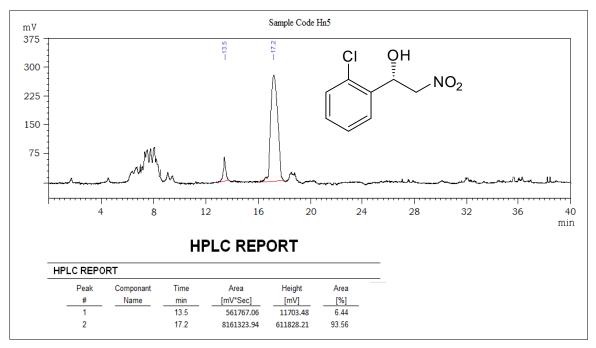


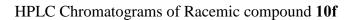
HPLC Chromatograms of Racemic compound 10c

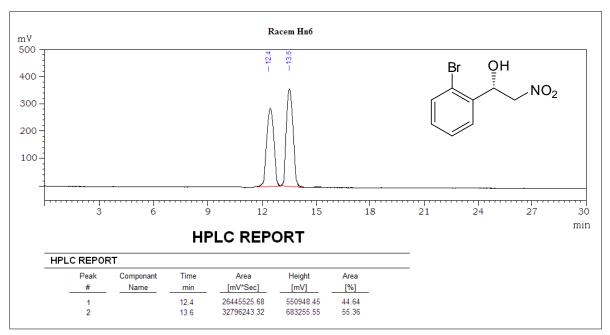




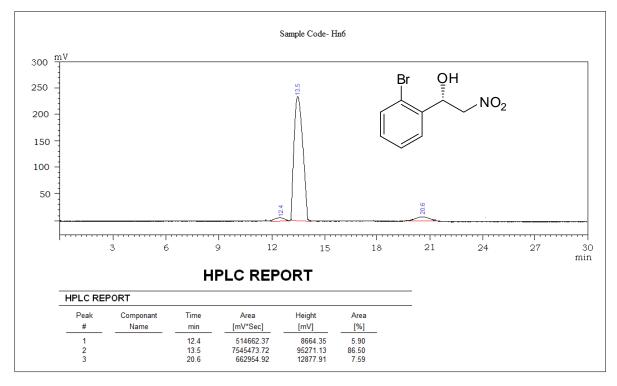


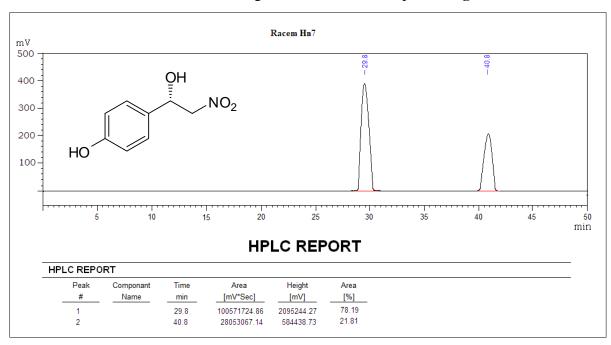

HPLC Chromatograms of compound 10d [ref2]

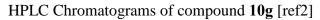


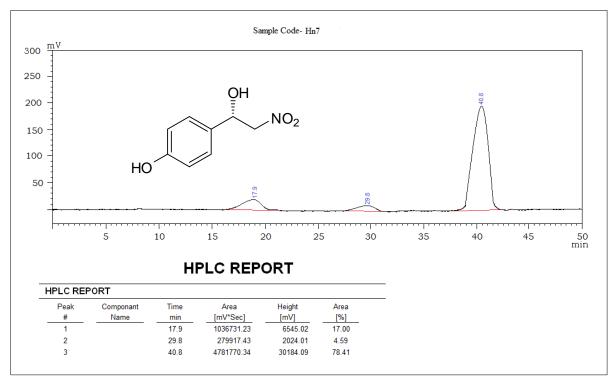


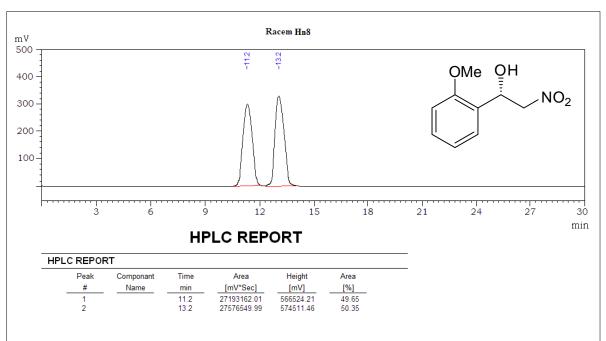
HPLC Chromatograms of Racemic compound 10e

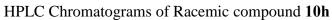


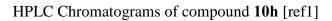


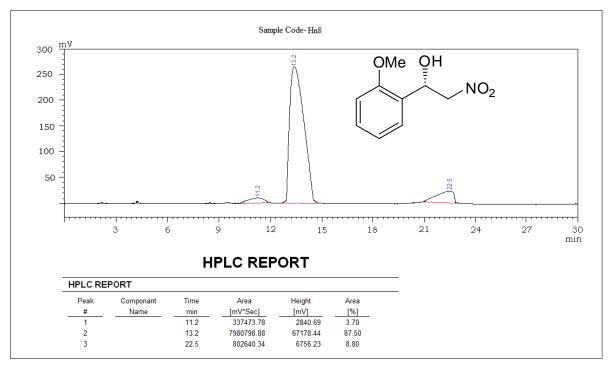


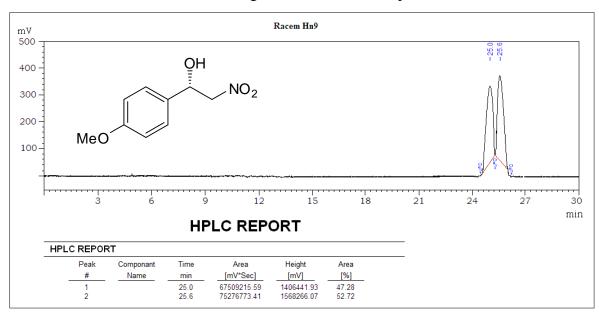

HPLC Chromatograms of compound 10f [ref1]

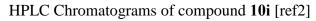


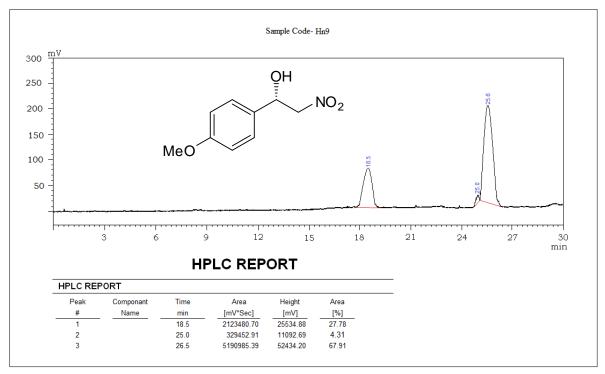


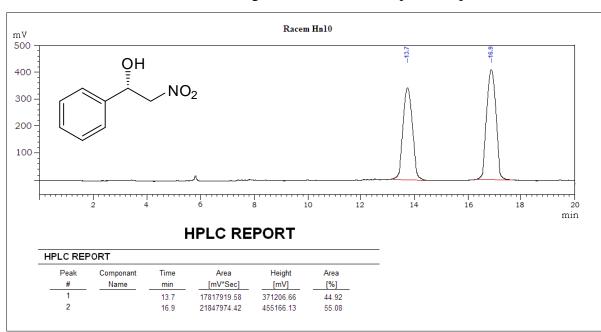

HPLC Chromatograms of Racemic compound 10g

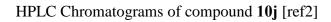


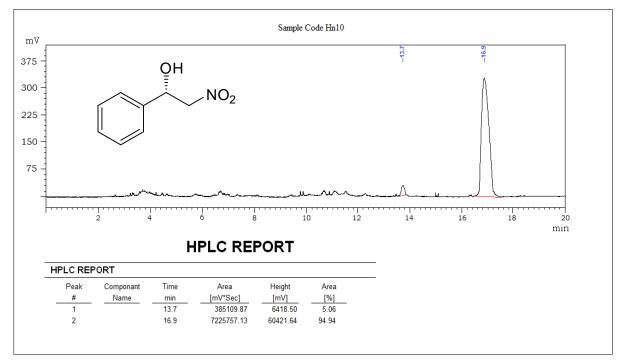


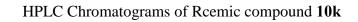


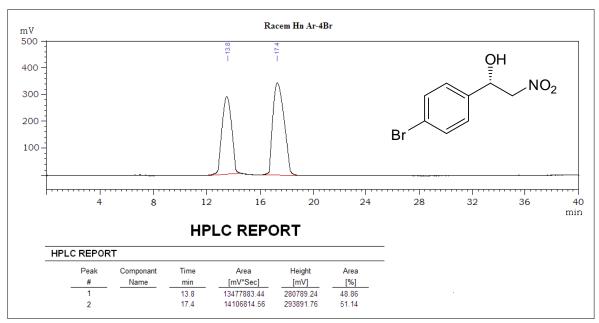




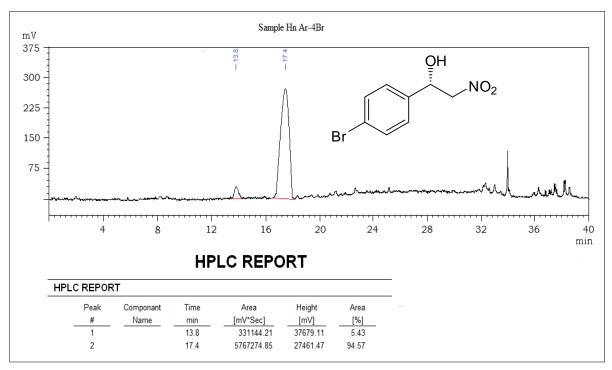

HPLC Chromatograms of Racemic compound 10i

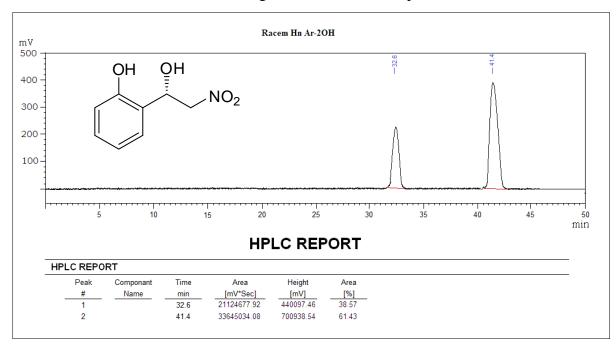


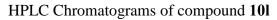


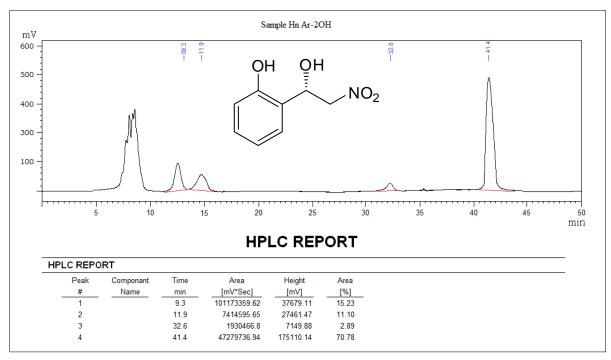


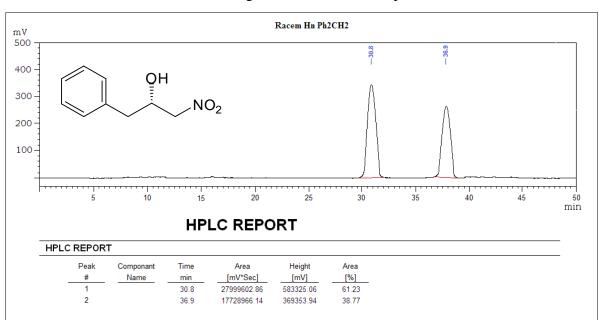
HPLC Chromatograms of Racemic compound 10j



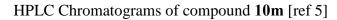


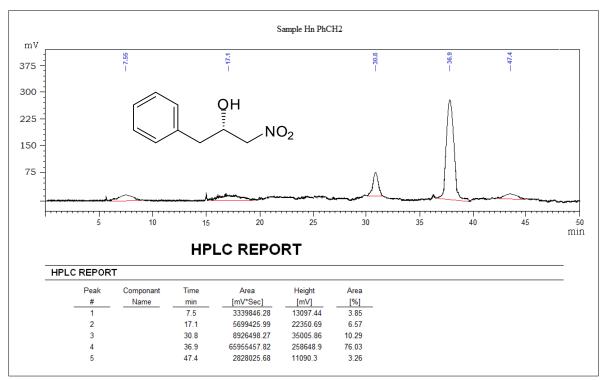


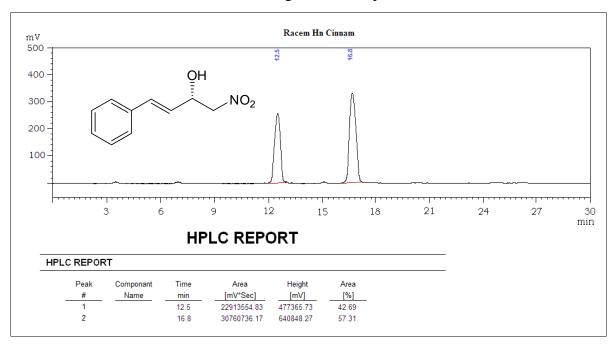

HPLC Chromatograms of compound 10k [ref6]

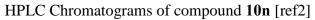


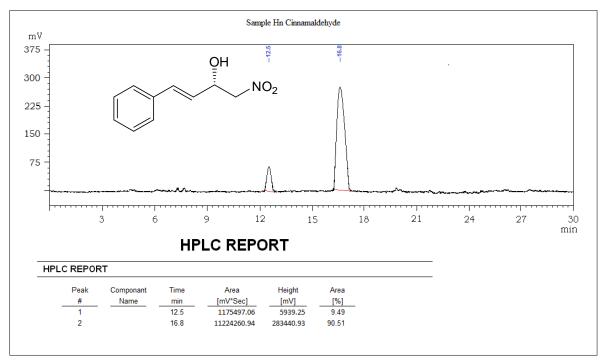


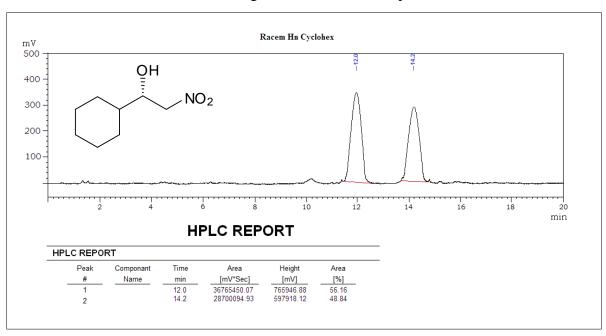

HPLC Chromatograms of Racemic compound 101

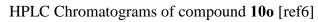


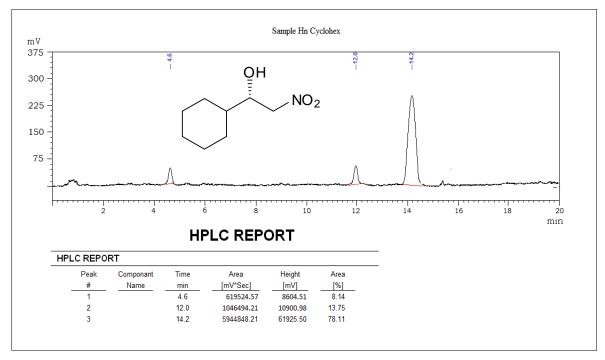


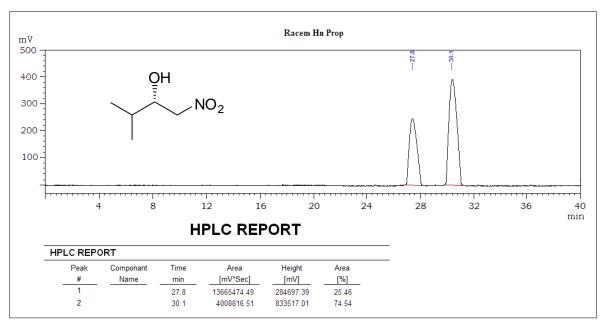


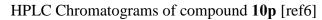


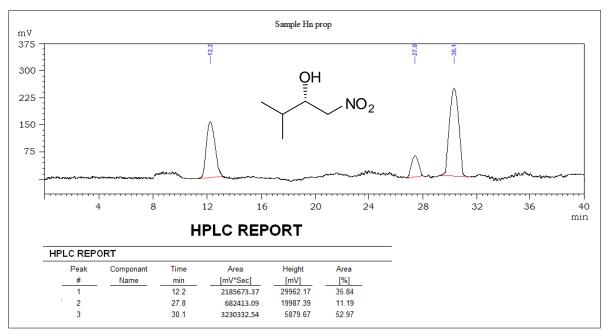


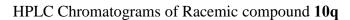

HPLC Chromatograms of compound 10n

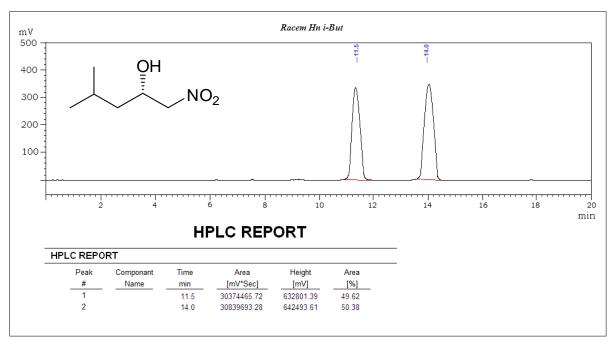


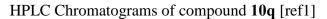


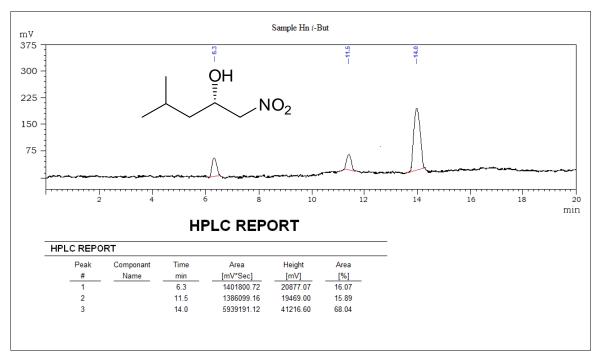

HPLC Chromatograms of Racemic compound 10o

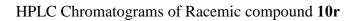


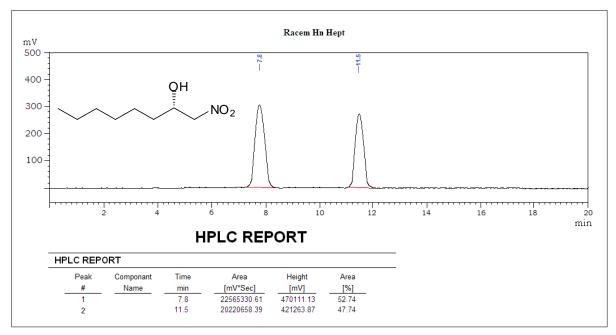


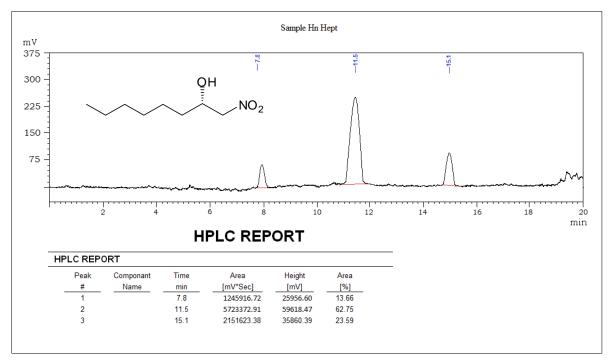



HPLC Chromatograms of Racemic compound 10p









HPLC Chromatograms of compound **10r** [ref3c]

References

- 1] R. Kowalczyk, L. Sidorowicz and J. Skarzewski *Tetrahedron: Asymmetry* 2007, **18**, 2581.
- K. Dhahagani, J. Rajesh, R. Kannan and G. Rajagopal *Tetrahedron: Asymmetry* 2011, 22, 857.
- a) X. G. Liu, J. J. Jianga and M. Shi, *Tetrahedron: Asymmetry* 2007, 18, 2773; b) B.
 V. S. Reddy, S. M. Reddy, M. Swain and M. Chinnala, *Tetrahedron: Asymmetry* 2011, 22, 530; c) B. Zheng, M. Wang, Z. Li, Q. Bian, J. Mao, S. Li, S. Liu, M. Wang, J. Zhong and H. Guo *Tetrahedron: Asymmetry* 2011, 22, 1156.
- 4] A. Bulut, A. Aslan, O. Dogan J. Org. Chem. 2008, 73, 7373.
- 5] C. Gan, G. Lai, Z. Zhang, Z. Wang, M. M. Zhou, *Tetrahedron: Asymmetry* **2006**, *17*, 725.
- 6] N. Sanjeevakumar, M. Periasamy *Tetrahedron: Asymmetry* **2009**, *20*, 1842.
- 7] B. M. Trost, V. S. C. Yeh Angew. Chem., Int. Ed. 2002, 41, 861.