10.1071/CH13163_AC © CSIRO 2013 Australian Journal of Chemistry 2013, 66(11), 1342-1351

Supplementary Material

Syntheses, photoluminescent properties and structural investigation of five complexes based on a new T-Shaped 2-(pyridin-3-yl)-4,6-pyrimidine dicarboxylic acid ligand: structure evolution from one-dimensional chains to three-dimensional architectures

Dongsheng Deng,^a Guohui Kang, ^c Baoming Ji,^{a,d} Hongliang Li, ^{a,b} Guirong Qu^b, Xuesen Fan,^b Chuansheng Ruan,^c Tiesheng Li,^c Mincan Wang ^c

^{*a*} College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China

^b College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China

^c Department of Chemistry, Zhengzhou University, Zhengzhou 450052, China ^dCorresponding author. Email: <u>lyhxxjbm@126.com</u>

Table S1Selected bond distances (Å) and angles (deg) for the complexes $1-5^a$

Complex 1										
$Mn(1)-O(4)^{i}$	2.0950(19)	Mn(1)-O(5)	2.140(2)	Mn(1)-N(1)	2.384(2)					
$Mn(1)-O(6)^{ii}$	2.124(2)	Mn(1)-O(1)	2.1440(19)	$Mn(1)-N(2)^{i}$	2.458(2)					
$O(4)^{i}-Mn(1)-O(6)$	86.62(8)	O(5)-Mn(1)-O(1)	90.54(7)	$O(4)^{i}-Mn(1)-N(2)^{i}$	72.85(7)					
$O(4)^{i}-Mn(1)-O(5)$	88.76(7)	$O(4)^{i}-Mn(1)-N(1)$	111.41(7)	$O(6)-Mn(1)-N(2)^{i}$	154.87(8)					
O(6)-Mn(1)-O(5)	108.88(9)	O(6)-Mn(1)-N(1)	94.90(8)	$O(5)-Mn(1)-N(2)^{i}$	85.49(7)					
$O(4)^{i}-Mn(1)-O(1)$	171.18(7)	O(5)-Mn(1)-N(1)	149.89(7)	$O(1)-Mn(1)-N(2)^{i}$	115.86(7)					
O(6)-Mn(1)-O(1)	85.29(8)	O(1)-Mn(1)-N(1)	72.84(7)	$N(1)-Mn(1)-N(2)^{i}$	79.86(7)					
Complex 2										
Cu(1)-O(1)	1.9359(16)	Cu(1)-O(5)	1.9671(17)	Cu(1)-N(1)	2.6149(18)					
$Cu(1)-O(4)^{i}$	1.9416(16)	Cu(1)-O(6)	1.9601(16)							
$O(1)-Cu(1)-O(4)^{i}$	179.52(6)	$O(4)^{i}$ -Cu(1)-O(5)	89.96(7)	$O(4)^{i}$ -Cu(1)-N(1)	106.28(6)					
O(1)-Cu(1)-O(6)	90.19(7)	O(6)-Cu(1)-O(5)	177.59(7)	O(6)-Cu(1)-N(1)	91.08(7)					
$O(4)^{i}$ -Cu(1)-O(6)	90.15(7)	O(1)-Cu(1)-N(1)	176.29(8)	O(5)-Cu(1)-N(1)	86.58(7)					
O(1)-Cu(1)-O(5)										
Complex 3										
$Co(1)-O(1)^{i}$	2.0392(15)	$Co(1)-N(1)^{i}$	2.2215(18)	$Co(2)-N(2)^{iv}$	2.2111(17)					
$Co(1)-N(3)^{ii}$	2.2198(18)	$Co(2)-O(4)^{iv}$	2.0394(15)	Co(2)-O(4)	2.0394(15)					
$Co(1)-N(3)^{iii}$	2.2198(18)	Co(2)-N(2)	2.2111(17)	Co(2)-O(5)	2.0781(16)					
$Co(2)-O(5)^{iv}$	2.0781(16)	Co(1)-N(1)	2.2215(18)	Co(1)-O(1)	2.0392(15)					
$O(1)^{i}$ -Co(1)-O(1)	180.000(1)	$N(3)^{iii}$ -Co(1)-N(1) ⁱ	93.26(7)	$O(5)^{iv}-Co(2)-O(5)$	180.000(1))					
$O(1)^{i}$ -Co(1)-N(3) ⁱⁱ	89.01(6)	O(1)-Co(1)-N(1)	78.08(6)	O(4)-Co(2)-N(2)	77.25(6)					
$O(1)^{i}-Co(1)-N(3)^{iii}$	90.99(6)	$N(1)^{i}$ -Co(1)-N(1)	180.000(1)	$O(5)^{iv}-Co(2)-N(2)$	85.80(6)					
$N(3)^{ii}-Co(1)-N(3)^{iii}$	180.000(1)	$O(4)^{iv}-Co(2)-O(4)$	180.000(1)	O(5)-Co(2)-N(2)	94.20(6)					
$O(1)-Co(1)-N(1)^{i}$	101.92(6)	$O(4)^{iv}$ -Co(2)-O(5) ^{iv}	90.67(6)	$O(4)-Co(2)-N(2)^{iv}$	102.75(6)					
$N(3)^{ii}-Co(1)-N(1)^{i}$	86.74(6)	$O(4)-Co(2)-O(5)^{iv}$	89.33(6)	$N(2)-Co(2)-N(2)^{iv}$	180.00(8)					
		Complex	4							
$Zn(1)-O(3)^{i}$	1.9579(17)	Zn(1)-O(5)	2.0638(18)	Zn(2)-N(1)	2.2574(18)					
Zn(1)-O(1)	2.0204(17)	$Zn(1)-N(3)^{ii}$	2.0916(18)							
$O(3)^{i}$ -Zn(1)-O(1)	171.75(7)	$O(1)-Zn(1)-N(3)^{ii}$	95.24(7)	O(1)-Zn(1)-N(1)	76.59(6)					
$O(3)^{i}$ -Zn(1)-O(5)	94.49(7)	$O(5)-Zn(1)-N(3)^{ii}$	105.59(7)	O(5)-Zn(1)-N(1)	133.61(6)					
O(1)-Zn(1)-O(5)	87.29(7)	$O(3)^{i}$ -Zn(1)-N(1)	96.49(7)	$N(3)^{ii}$ -Zn(1)-N(1)	118.84(7)					
$O(3)^{i}$ -Zn(1)-N(3) ⁱⁱ	92.04(7)									
		Complex	x 5							
$Cd(1)-O(2)^{i}$	2.254(2)	$Cd(1)-O(1)^{iii}$	2.279(2)	Cd(1)-O(4)	2.430(2)					
$Cd(1)-N(4)^{ii}$	2.267(2)	Cd(1)-O(3)	2.395(2)	$Cd(1)-O(3)^{iv}$	2.576(2)					
$Cd(1)-O(4)^{v}$	2.649(2)									
$O(2)^{1}-Cd(1)-N(4)^{ii}$	94.24(8)	$N(4)^{n}-Cd(1)-O(4)$	150.27(9)	$O(4)-Cd(1)-O(3)^{iv}$	71.94(7)					
$O(2)^{1}-Cd(1)-O(1)^{11}$	173.18(10)	$O(1)^{11}-Cd(1)-O(4)$	85.64(8)	$O(2)^{1}-Cd(1)-O(4)^{v}$	95.82(8)					
$N(4)^{ii}-Cd(1)-O(1)^{iii}$	86.08(9)	O(3)-Cd(1)-O(4)	55.06(8)	$N(4)^{n}-Cd(1)-O(4)^{v}$	83.04(9)					

$O(2)^{i}-Cd(1)-O(3)$	84.47(8)	$O(2)^{i}-Cd(1)-O(3)^{iv}$	79.24(8)	$O(1)^{iii}-Cd(1)-O(4)^{v}$	77.45(8)				
$N(4)^{ii}$ -Cd(1)-O(3)	153.86(9)	$N(4)^{ii}$ -Cd(1)-O(3) ^{iv}	83.50(9)	$O(3)-Cd(1)-O(4)^{v}$	71.17(7)				
$O(1)^{iii}$ -Cd(1)-O(3)	92.23(8)	$O(1)^{iii}-Cd(1)-O(3)^{iv}$	107.55(8)	$O(4)-Cd(1)-O(4)^{v}$	122.67(7)				
$O(2)^{i}-Cd(1)-O(4)$	97.27(8)	$O(3)-Cd(1)-O(3)^{iv}$	121.60(7)	$O(3)^{iv}-Cd(1)-O(4)^{v}$	165.27(7)				
^a Symmetry transformations used to generate equivalent atoms for 1: i) -x+3/2, y-1/2, -z+1/2. For 2: x+1/2, -y+1/2,									
z-1/2. For 3 : i) -x+1, -y+1, -z+2. ii) -x+2, -y+1, -z+2. iii) x-1, y, z. iv) -x+2, -y+2, -z+1. For 4: i) -x, y+1/2, -z+1/2.									
ii) -x, -y, -z. For 5 : i) -x+1, y+1/2, -z+1/2. ii) x, y+1, z. iii) -x+3/2, -y+1, z+1/2. iv) x-1/2, -y+3/2, -z+1. v) x+1/2,									
-y+3/2, -z+1.									

_

Geometrical Parameters of Hydrogen Bonds (Å, °) for complexes 1-5 D-H…A $d(H \cdots A) (\overline{A})$ $d(D \cdots A)$ (Å) d(D-H) (Å) <(DHA) Symmetry codes Complex 1 $O5-H1w \cdot O3$ 0.85 1.82 2.666(3) 173.8 x-1/2, -y+1/2, z+1/2 O5-H2w…O2 0.85 1.88 2.710(3) 167.1 -x+2, -y, -z+1 O6-H3w · · O2 0.85 1.96 2.811(3) 175.1 -x+2, -y+1, -z+1 O6-H4w…N3 1.95 -x+1, -y+1, -z+1 0.85 2.768(3) 162.5 Complex 2 O5-H1w…O2 0.85 1.77 2.609(2) 170.8 -x+5/2, y+1/2, -z+3/2 O5-H2w…O3 0.85 1.97 2.767(2) 156.4 -x+2, -y, -z+2 O6-H3w…N3 2.705(3) 170.9 -x+3/2, y-1/2, -z+3/2 0.85 1.86 O6-H4w…O3 0.85 1.96 2.746(2) 153.3 -x+3/2, y+1/2, -z+3/2 Complex 3 $O5\text{-}H1w{\cdots}O3$ 0.85 1.80 2.644(2)175.2 -x+1, -y+2, -z+1 $O5\text{-}H2w{\cdots}O2$ 0.85 2.697(2) 173.4 x+1, y, z-1 1.85 Complex 4 O5-H2w…O3 0.85 2.63 x, -y+1/2, z-1/2 3.268(2) 132.5 O5-H2w…O4 167.6 0.85 1.89 2.724(2) x, -y+1/2, z-1/2 O5-H1w…O2 0.85 1.88 2.697(2) 162.0 -x+1, y+1/2, -z+1/2

Table S2