Supplementary Material

\mathbf{N}-Heterocyclic Silylene (NHSi) Rhodium and Iridium Complexes: Synthesis, Structure, Reactivity and Catalytic Ability

Miriam Stoelzel, ${ }^{A}$ Carsten Präsang, ${ }^{\text {A,\# }}$ Burgert Blom, ${ }^{A}$ and Matthias Driess ${ }^{A, B}$
${ }^{\text {A }}$ Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin
Strasse des 17. Juni 135, Sekr. C2 D-10623 Berlin, Germany.
Fax: (+49) 3031429734
${ }^{\text {B }}$ Corresponding author. E-mail: matthias.driess@tu-berlin.de

A. Additional Synthetic Information involving $\mathrm{Li}\left[\mathrm{HBEt}_{3}\right]$

$\underline{\mathrm{L}(\mathrm{Cl}) \mathrm{Si}: \rightarrow \mathrm{Rh}(\mathrm{Cl}) \operatorname{cod} \mathbf{1 0 a}+2 \text { eq. } \mathrm{Li}\left[\mathrm{HBEt}_{3}\right] ;[(\mathrm{L}(\mathrm{H}) \mathrm{Si}: \rightarrow \mathrm{Rh}(\mathrm{H}) \operatorname{cod}](\mathbf{1 3 b})}$

A solution of $\mathrm{Li}\left[\mathrm{HBEt}_{3}\right]$ in THF $(0.33 \mathrm{~mL}, 1.0 \mathrm{M}, 0.33 \mathrm{mmol}, 2$ eq.) was added to a solution of 120 mg $\mathrm{L}(\mathrm{Cl}) \mathrm{Si}: \rightarrow \mathrm{Rh}(\mathrm{Cl}) \operatorname{cod} \mathbf{1 0 a}(0.16 \mathrm{mmol})$ in 15 mL toluene at $-40^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature. (see: ${ }^{1} \mathrm{H}$ NMR of reaction mixture). All volatiles were removed in vacuo and the solid dissolved in n-hexane and cooling to $-30^{\circ} \mathrm{C}$ afforded brown crystals.
${ }^{1} \mathrm{H}$ NMR of reaction mixture after warmed up to room temperature ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta=-6.94(\mathrm{~d}, 1 \mathrm{H}$, Rh- H), $1.11-1.18\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{C} \underline{H})_{3}\right), 1.46-1.58\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{C} \underline{H})_{3}\right), 1.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{3}\right), 2.23$ (br, 2H, cod$\mathrm{C} \underline{H}), 3.14$ (sept, $\left.2 \mathrm{H}, \mathrm{C} \underline{H}(\mathrm{CH})_{3}\right), 3.53$ (sept, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H}(\mathrm{CH})_{3}\right), 3.98(\mathrm{br}, 2 \mathrm{H}, \operatorname{cod}-\mathrm{C} \underline{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}$, $\gamma-\underline{H} ; \mathbf{1 3 b}), 5.07(\mathrm{~s}, 1 \mathrm{H}, \gamma-\underline{H} ; \mathbf{1 3 a}), 5.48\left(\mathrm{br}, 2 \mathrm{H}, \operatorname{cod}-\underline{C H}_{2}\right), 6.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Si}-H), 7.02-7.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \underline{H}_{\mathrm{Ar}}\right)$.
${ }^{1} \mathrm{H}$ NMR of reaction mixture after 12 h at room temperature inside nmr tube ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): 1.11, 1.15 (each d, $\left.6 \mathrm{H}, \mathrm{CH}(\mathrm{C} \underline{H})_{3}\right), 1.44\left(\mathrm{br}, 4 \mathrm{H}, \operatorname{coe}-\underline{C H}_{2}\right), 1.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C} \underline{H}_{3}\right), 1.51,1.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\left.\mathrm{CH}(\mathrm{C} \underline{H})_{3}\right), 2.05\left(\mathrm{br}, 2 \mathrm{H}\right.$, coe- $\underline{C H}_{2}$), $3.09,3.53$ (each sept, ${ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H}(\mathrm{CH})_{3}, 5.00(\mathrm{~s}, 1 \mathrm{H}, \gamma-\underline{H} ; \mathbf{1 3 b})$, $5.64(\mathrm{~m}, 1 \mathrm{H}, \operatorname{coe}-\mathrm{C} \underline{H}), 7.03-7.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}_{\mathrm{Ar}}}\right)$.

Figure S1. Molecular structure of 13b. brown needles
emistry, Campus Dudweiler, Saarland University, Am Markt Zeile
triclinic, $\mathrm{P}-1$
$R($ int $)=9.14 \%$
$\mathrm{R} 1=7.62 \%$
$\mathrm{wR}_{2}=14.60 \%$

$\underline{\mathrm{L}(\mathrm{Cl}) \mathrm{Si}: \rightarrow \mathrm{Rh}(\mathrm{Cl}) \operatorname{cod} \mathbf{1 0 a}+2 \text { eq. } \mathrm{Li}\left[\mathrm{HBEt}_{3}\right] \text { (in } \mathrm{CO} \text { atmosphere) (13c) }}$

A solution of $\mathrm{Li}\left[\mathrm{HBEt}_{3}\right]$ in THF $(0.33 \mathrm{~mL}, 1.0 \mathrm{M}, 0.33 \mathrm{mmol}, 2 \mathrm{eq}$.) was added to a solution of 120 mg $\mathrm{L}(\mathrm{Cl}) \mathrm{Si}: \rightarrow \mathrm{Rh}(\mathrm{Cl}) \operatorname{cod} 10 \mathrm{a}(0.16 \mathrm{mmol})$ in 15 mL toluene at $-70^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-70^{\circ} \mathrm{C}$ while the reaction mixture was degassed. Subsequent the reaction vessel was charged with CO to normal pressure and was stirred at room temperature for 3 h . All volatiles were removed in vacuo and the solid washed with n-hexane and subsequent dissolved in toluene. Cooling to $-30^{\circ} \mathrm{C}$ for several weeks afforded a few dark red crystals from the product mixture.

Figure S2. Molecular structure of 13c.
dark red blocks
triclinic, $\mathrm{P}-1$
$R($ int $)=11.2 \%$
$\mathrm{R} 1=10.2$ \%
$w R_{2}=29.1 \%$

B. Catalytic Details

General procedure for the reduction of amides:

A stock solution of phenylsilane in toluene ($1.8 \mathrm{~mL}, 0.36 \mathrm{mmol}, 0.2 \mathrm{~mol} / \mathrm{L}, 2.5 \mathrm{eq}$.) was added to a stirring solution containing a stock solution of the pre-catalyst $\mathbf{1 0 a}$ or $\mathbf{1 0 b}(4.0 \mathrm{mmol} / \mathrm{L}, 0.0036 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$ and a
stock solution of the substrate $11(0.9 \mathrm{~mL}, 0.16 \mathrm{~mol} / \mathrm{L}, 0.14 \mathrm{mmol}, 1 \mathrm{eq}$.$) in toluene (1 \mathrm{~mL}$). The solution was stirred at room temperature for 24 h , while the reaction progress was followed by GC-MS. After $1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h}$ and 24 h a small amount of the reaction mixture was passed through a short column with alumina to remove the catalyst from the sample, followed by elution with ethylacetate. The reaction was treated with aqueous HCl and the organic layer was dried by MgSO_{4}. Subsequently, the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ cleavage products as well as the residual starting material were quantified by GC-MS.

Scheme S1. Reduction of the organic amide 11 with complexes $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ as precatalysts.

Catalytic activity of 10a:

Table S1. Catalytic activity of $2.5 \mathrm{~mol} \%$ of pre-catalyst $\mathbf{1 0 a}$ (retarded by $\mathrm{Li}\left[\mathrm{HBEt}_{3}\right]$) and $\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}$.

time [h]	\% yield ${ }^{[2]}$		
	10a	10a + Li[HBEt $\left.{ }_{3}\right]$	$\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}$
1	30,0	10,9	39,3
2	38,7	14,0	43,1
4	46,5	18,7	46,2
6	48,7	23,2	47,1
24	60,8	39,9	53,3

Figure S3. Catalytic activity of $\mathrm{Rh}(\mathrm{Cl}) \operatorname{cod}$ and $\mathbf{1 0 a}$ (retarded by $\mathrm{Li}\left[\mathrm{HBEt}_{3}\right]$).

Catalytic activity of 10b:

Table S2. Catalytic activity of $2.5 \mathrm{~mol} \%$ pre-catalyst $\mathbf{1 0 b}$ and $\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}$;

time [h]	\% yield $^{[\mathrm{ab}]}$			
	total	$\mathbf{1 2 a}$	$\mathbf{1 2 b}$	$\mathbf{I r (c o d) C I ^ { [b] }}$
$\mathbf{1}$	26,7	23,4	3,2	15,5
$\mathbf{2}$	32,3	28,6	3,6	20,9
$\mathbf{4}$	49,4	44,3	5,2	25,6
$\mathbf{6}$	59,8	53,6	6,2	27,8

${ }^{[a]}$ Indicated yields according to GC-MS; ${ }^{[b]}$ exclusively $\mathbf{1 2 b}$ as product

Figure S4. Catalytic activity of $\operatorname{Ir}(\mathrm{Cl}) \operatorname{cod}$ and $[\mathrm{LSi}(\mathrm{Cl}) \operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}] \mathbf{1 0 b}$.

C. Crystal data

Table S3. Crystal data and structure refinement for 10a

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I $>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{RhSi}$
727.71

150(2) K
$0.71073 \AA$
Monoclinic
P21/c
$a=9.8788(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=21.0810(6) \AA \quad \beta=104.916(3)^{\circ}$.
$\mathrm{c}=18.0480(5) \AA \quad \gamma=90^{\circ}$.
3631.94(18) \AA^{3}

4
$1.331 \mathrm{Mg} / \mathrm{m}^{3}$
$0.678 \mathrm{~mm}^{-1}$
1528
$0.17 \times 0.11 \times 0.08 \mathrm{~mm}^{3}$
3.31 to 25.00°.
$-11<=\mathrm{h}<=6,-24<=\mathrm{k}<=13,-15<=\mathrm{l}<=21$
13243
$6292[\mathrm{R}(\mathrm{int})=0.0453]$
98.4 \%

Semi-empirical from equivalents
0.9478 and 0.8935

Full-matrix least-squares on F^{2}
6292 / 12 / 398
0.852
$\mathrm{R} 1=0.0404, \mathrm{wR} 2=0.0622$
$\mathrm{R} 1=0.0777, \mathrm{wR} 2=0.0677$
0.495 and -0.515 e. \AA^{-3}

Table S4. Crystal data and structure refinement for 10b

Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{Cl}_{2} \mathrm{IrN} \mathrm{N}_{2} \mathrm{Si}$
Formula weight	817.00
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	P21/c
Space group	Monoclinic
Unit cell dimensions	$a=9.9110(6) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=21.0914(9) \AA \quad \beta=105.099(8)^{\circ}$.
	$\mathrm{c}=18.0257(15) \AA$ 这 $\quad \gamma=90^{\circ}$.
Volume	3638.0(4) \AA^{3}
Z	4
Density (calculated)	$1.492 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.877 \mathrm{~mm}^{-1}$
F(000)	1656
Crystal size	$0.11 \times 0.11 \times 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	3.31 to 25.00°.
Index ranges	$-11<=\mathrm{h}<=11,-25<=\mathrm{k}<=24,-17<=\mathrm{l}<=21$
Reflections collected	26737
Independent reflections	$6382[\mathrm{R}(\mathrm{int})=0.0313]$
Completeness to theta $=25.00^{\circ}$	99.7 \%
Max. and min. transmission	0.8795 and 0.6795
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6382 / 0 / 398
Goodness-of-fit on F^{2}	0.978
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0217, \mathrm{wR} 2=0.0512$
R indices (all data)	$\mathrm{R} 1=0.0292, \mathrm{wR} 2=0.0525$
Largest diff. peak and hole	0.859 and -0.498 e. \AA^{-3}

Table S5. Crystal data and structure refinement for 15.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{C}_{10} \mathrm{IrN}_{2} \mathrm{Si}$
776.17

173(2) K
71.073 pm
orthorhombic
P 212121
$\mathrm{a}=1010.45(8) \mathrm{pm} \quad \alpha=90^{\circ}$.

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{b}=1831.84(11) \mathrm{pm} \quad \beta=90^{\circ}$.
$\mathrm{c}=1941.09(7) \mathrm{pm} \quad \gamma=90^{\circ}$.
$3.5929(4) \mathrm{nm}^{3}$

4
$1.435 \mathrm{Mg} / \mathrm{m}^{3}$
$3.778 \mathrm{~mm}^{-1}$
1592
$0.33 \times 0.07 \times 0.04 \mathrm{~mm}^{3}$
3.34 to 25.00°.
$-12<=\mathrm{h}<=11,-14<=\mathrm{k}<=21,-23<=1<=23$
14451
$6286[\mathrm{R}(\mathrm{int})=0.0580]$
99.6 \%
0.8666 and 0.3722

Full-matrix least-squares on F^{2}
6286 / 0 / 400
0.894
$R 1=0.0386, \mathrm{wR} 2=0.0605$
$\mathrm{R} 1=0.0448, \mathrm{wR} 2=0.0629$
-0.020(8)
1.549 and $-1.007 \mathrm{e} . \AA^{-3}$

Table S6. Crystal data and structure refinement for 13b.

Empirical formula	$\mathrm{C}_{61} \mathrm{H}_{87} \mathrm{~N}_{4} \mathrm{Rh}_{2} \mathrm{Si}_{2}$	
Formula weight	1138.35	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	triclinic	
Space group	$\mathrm{P}-1$	$\alpha=92.625(4)^{\circ}$.
Unit cell dimensions	$\mathrm{a}=9.8052(6) \AA$	$\beta=95.787(4)^{\circ}$.
	$\mathrm{b}=12.8126(7) \AA$	$\gamma=104.310(5)^{\circ}$.
	$\mathrm{c}=23.6516(11) \AA$	
Volume	$2856.8(3) \AA^{3}$	
Z	2	
Density (calculated)	$1.323 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.660 \mathrm{~mm}^{-1}$	
F(000)	1198	
Crystal size	$0.29 \times 0.14 \times 0.03 \mathrm{~mm}^{3}$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
3.25 to 25.00°.
$-11<=\mathrm{h}<=11,-14<=\mathrm{k}<=15,-26<=\mathrm{l}<=28$
22927
$10043[\mathrm{R}(\mathrm{int})=0.0914]$
99.8 \%

Full-matrix least-squares on F^{2}
10043 / 0 / 641
1.107
$R 1=0.0762, w R 2=0.1460$
$R 1=0.1162, w R 2=0.1699$
1.203 and -0.909 e. \AA^{-3}

Table S7. Crystal data and structure refinement for $\mathbf{1 3 c}$.

Empirical formula	$\mathrm{C}_{69} \mathrm{H}_{82} \mathrm{ClN}_{4} \mathrm{O}_{11} \mathrm{Rh}_{5} \mathrm{Si}_{2}$
Formula weight	1749.57
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=12.7014(6) \AA \quad \alpha=78.108(3)^{\circ}$.
	$\mathrm{b}=16.6523(7) \AA \quad \beta=74.266(4)^{\circ}$.
	$\mathrm{c}=21.7110(8) \AA \quad \gamma=76.377(4)^{\circ}$.
Volume	4245.7(3) \AA^{3}
Z	2
Density (calculated)	$1.369 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.061 \mathrm{~mm}^{-1}$
F(000)	1764
Crystal size	$0.10 \times 0.13 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	3.31 to 25.00°.
Index ranges	$-15<=\mathrm{h}<=15,-19<=\mathrm{k}<=18,-25<=\mathrm{l}<=25$
Reflections collected	32605
Independent reflections	$14893[\mathrm{R}($ int $)=0.1121]$
Completeness to theta $=25.00^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14893 / 0 / 849
Goodness-of-fit on F^{2}	1.052
Final R indices [$\mathrm{I}>2$ sigma(I) $]$	$\mathrm{R} 1=0.1017, \mathrm{wR} 2=0.2906$

R indices (all data)
Largest diff. peak and hole
$\mathrm{R} 1=0.1739, \mathrm{wR} 2=0.3505$
3.325 and $-1.191 \mathrm{e} . \AA^{-3}$

References

[1] M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628.
[2] J. L. Herde, J. C. Lambert, C. V. Senoff, Inorg. Synth., 15, 18.
[3] G. M. Sheldrick, SHELX-97 Program for Crystal Structure Determination, Universität Göttingen (Germany)
1997.

