#### Five bis(imidazole)-based coordination polymers tuned by central

### metal ions and S-containing dicarboxylates: syntheses, structures and

#### properties

# Xiu-Li Wang,<sup>\*</sup> Yun Qu, Guo-Cheng Liu, Jing-Jing Huang, Nai-Li Chen and Hong-Yan Lin

Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering

Technology Research Centre, Jinzhou 121000, China

| Table S1. Selected bond distances (Å) and angles (°) for complex 1                                                     |            |                     |            |  |  |
|------------------------------------------------------------------------------------------------------------------------|------------|---------------------|------------|--|--|
| Zn(1)-O(3)#1                                                                                                           | 1.932(2)   | Zn(1)-O(1)          | 1.958(2)   |  |  |
| Zn(1)-N(5)#2                                                                                                           | 1.994(3)   | Zn(1)-N(1)          | 2.014(3)   |  |  |
| O(3)#1-Zn(1)-O(1)                                                                                                      | 105.92(10) | O(3)#1-Zn(1)-N(5)#2 | 125.04(12) |  |  |
| O(1)-Zn(1)-N(5)#2                                                                                                      | 107.93(11) | O(3)#1-Zn(1)-N(1)   | 106.98(12) |  |  |
| O(1)-Zn(1)-N(1)                                                                                                        | 105.83(11) | N(5)#2-Zn(1)-N(1)   | 103.78(12) |  |  |
| Symmetry code: #1 $x$ + 1, $y$ , $z$ ; #2 $x$ + 1/2, $-y$ - 1/2, $z$ + 1/2; #3 $x$ - 1, $y$ , $z$ ; #4 $x$ - 1/2, $-y$ |            |                     |            |  |  |
| -1/2, z-1/2                                                                                                            |            |                     |            |  |  |

Table S2. Selected bond distances (Å) and angles (°) for complex 2

| Co(1)-O(1)        | 2.028(6)   | Co(1)-N(3)        | 2.100(9)   |
|-------------------|------------|-------------------|------------|
| Co(1)-S(1)        | 2.592(3)   | Co(2)-O(4)        | 2.097(6)   |
| Co(2)-O(3W)       | 2.096(7)   | Co(2)-O(2W)       | 2.115(8)   |
| Co(3)-O(1W)       | 2.078(8)   | Co(3)-O(6)        | 2.092(7)   |
| Co(3)-O(4W)       | 2.115(7)   | Co(4)-O(8)        | 2.067(7)   |
| Co(4)-N(1)        | 2.089(10)  | Co(4)-S(2)        | 2.600(3)   |
| O(1)-Co(1)-O(1)#1 | 180.000(1) | O(1)-Co(1)-N(3)   | 90.5(3)    |
| O(1)#1-Co(1)-N(3) | 89.5(3)    | O(1)-Co(1)-N(3)#1 | 89.5(3)    |
| O(1)-Co(1)-S(1)#1 | 100.0(2)   | N(3)-Co(1)-N(3)#1 | 179.999(1) |
| N(3)-Co(1)-S(1)#1 | 85.2(2)    | O(4)-Co(2)-O(4)#2 | 179.999(1) |
|                   |            |                   |            |

\* Corresponding author. Tel.: +86-416-3400158

*E-mail address*: <u>wangxiuli@bhu.edu.cn</u> (X.-L. Wang)

\_\_\_\_\_

|                                                                                                                                |            | ·                   |            |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|------------|--|
| O(1)-Co(1)-S(1)                                                                                                                | 80.0(2)    | O(1)#1-Co(1)-S(1)   | 100.0(2)   |  |
| N(3)-Co(1)-S(1)                                                                                                                | 94.5(3)    | O(4)-Co(2)-O(2W)    | 91.5(3)    |  |
| S(1)#1-Co(1)-S(1)                                                                                                              | 180.0      | O(3W)-Co(2)-O(2W)   | 91.7(3)    |  |
| O(3W)-Co(2)-O(2W)#2                                                                                                            | 88.3(3)    | O(4)-Co(2)-O(2W)#2  | 88.5(3)    |  |
| O(4)#2-Co(2)-O(2W)#2                                                                                                           | 91.5(3)    | O(2W)-Co(2)-O(2W)#2 | 180.0      |  |
| O(3W)-Co(2)-O(3W)#2                                                                                                            | 179.999(1) | O(6)#3-Co(3)-O(6)   | 179.999(2) |  |
| O(1W)-Co(3)-O(1W)#3                                                                                                            | 179.999(1) | O(1W)-Co(3)-O(6)    | 88.7(3)    |  |
| O(1W)-Co(3)-O(4W)#3                                                                                                            | 88.5(3)    | O(6)-Co(3)-O(4W)#3  | 88.3(3)    |  |
| O(1W)-Co(3)-O(4W)                                                                                                              | 91.5(3)    | O(1W)#3-Co(3)-O(4W) | 88.5(3)    |  |
| O(8)-Co(4)-N(1)#4                                                                                                              | 90.3(3)    | O(6)-Co(3)-O(4W)    | 91.7(3)    |  |
| O(4W)#3-Co(3)-O(4W)                                                                                                            | 179.998(1) | O(8)#4-Co(4)-O(8)   | 179.999(1) |  |
| O(8)#4-Co(4)-N(1)                                                                                                              | 90.3(3)    | O(8)-Co(4)-N(1)     | 89.7(3)    |  |
| N(1)#4-Co(4)-N(1)                                                                                                              | 179.999(1) | O(8)#4-Co(4)-S(2)   | 99.5(2)    |  |
| O(8)-Co(4)-S(2)                                                                                                                | 80.5(2)    | N(1)-Co(4)-S(2)#4   | 94.1(3)    |  |
| N(1)-Co(4)-S(2)                                                                                                                | 85.9(3)    | S(2)-Co(4)-S(2)#4   | 180.00(11) |  |
| Symmetry code: $\#1 - x + 1$ , $-y + 1$ , $-z$ ; $\#2 - x + 2$ , $-y$ , $-z$ ; $\#3 - x + 2$ , $-y - 2$ , $-z + 1$ ; $\#4 - x$ |            |                     |            |  |
| +1, -y-1, -z+1                                                                                                                 |            |                     |            |  |
|                                                                                                                                |            |                     |            |  |

Table S3. Selected bond distances (Å) and angles (°) for complex 3

| Ni(1)-O(2W)           | 2.017(11)  | Ni(1)-O(2W)#1        | 2.017(11)  |
|-----------------------|------------|----------------------|------------|
| Ni(1)-O(1W)#1         | 2.040(13)  | Ni(1)-O(1W)          | 2.041(13)  |
| Ni(1)-O(3)            | 2.070(13)  | Ni(1)-O(3)#1         | 2.070(13)  |
| S(1)-Ni(2)            | 2.536(5)   | O(1)-Ni(2)           | 2.041(13)  |
| N(1)-Ni(2)            | 2.058(15)  | Ni(2)-O(1)#2         | 2.041(13)  |
| Ni(2)-N(1)#2          | 2.058(15)  | Ni(2)-S(1)#2         | 2.536(5)   |
| O(2W)-Ni(1)-O(2W)#1   | 180.000(1) | O(2W)-Ni(1)-O(1W)#1  | 88.2(4)    |
| O(2W)#1-Ni(1)-O(1W)#1 | 91.8(4)    | O(2W)-Ni(1)-O(1W)    | 91.8(4)    |
| O(2W)#1-Ni(1)-O(1W)   | 88.2(4)    | O(1W)#1-Ni(1)-O(1W)  | 180.0      |
| O(2W)-Ni(1)-O(3)      | 87.2(5)    | O(2W)#1-Ni(1)-O(3)   | 92.8(5)    |
| O(1W)#1-Ni(1)-O(3)    | 88.9(5)    | O(1W)-Ni(1)-O(3)     | 91.1(5)    |
| O(2W)-Ni(1)-O(3)#1    | 92.8(5)    | O(2W)#1-Ni(1)-O(3)#1 | 87.2(5)    |
| O(1W)#1-Ni(1)-O(3)#1  | 91.1(5)    | O(1W)-Ni(1)-O(3)#1   | 88.9(5)    |
| O(3)-Ni(1)-O(3)#1     | 179.999(1) | O(1)#2-Ni(2)-O(1)    | 179.999(1) |
| O(1)#2-Ni(2)-N(1)#2   | 89.4(5)    | O(1)-Ni(2)-N(1)#2    | 90.6(5)    |
| O(1)#2-Ni(2)-N(1)     | 90.6(5)    | O(1)-Ni(2)-N(1       | 89.4(5)    |
| N(1)#2-Ni(2)-N(1)     | 180.000(1) | O(1)#2-Ni(2)-S(1)    | 98.4(4)    |
| O(1)-Ni(2)-S(1)       | 81.6(4)    | N(1)#2-Ni(2)-S(1)    | 94.5(4)    |
| N(1)-Ni(2)-S(1)       | 85.5(4)    | O(1)#2-Ni(2)-S(1)#2  | 81.6(4)    |

| O(1)-Ni(2)-S(1)#2                                                                                          | 98.4(4) | N(1)#2-Ni(2)-S(1)#2 | 85.5(4) |  |  |
|------------------------------------------------------------------------------------------------------------|---------|---------------------|---------|--|--|
| N(1)-Ni(2)-S(1)#2                                                                                          | 94.5(4) | S(1)-Ni(2)-S(1)#2   | 180.0   |  |  |
| Symmetry code: $\#1 - x - 1$ , $-y + 1$ , $-z$ ; $\#2 - x$ , $-y$ , $-z$ ; $\#3 - x$ , $-y - 1$ , $-z + 1$ |         |                     |         |  |  |

**Supplementary Material** 

| Table S4. Selected bond distances (Å) and angles (°) for complex 4 |            |                       |            |  |
|--------------------------------------------------------------------|------------|-----------------------|------------|--|
| Cd(1)-O(1W)                                                        | 2.278(2)   | Cd(1)-O(1)            | 2.283(2)   |  |
| Cd(2)-O(3)                                                         | 2.286(2)   | Cd(1)-O(2W)           | 2.289(2)   |  |
| S(1)-Cd(2)                                                         | 2.7853(8)  | N(1)-Cd(2)            | 2.282(2)   |  |
| O(1W)-Cd(1)-O(1W)#1                                                | 180.0      | O(1W)-Cd(1)-O(1)      | 90.12(10)  |  |
| O(1W)#1-Cd(1)-O(1)                                                 | 89.88(10)  | O(1)#1-Cd(1)-O(2W)    | 87.63(8)   |  |
| O(1W)#1-Cd(1)-O(1)#1                                               | 90.12(10)  | O(1)-Cd(1)-O(1)#1     | 180.0      |  |
| O(1W)-Cd(1)-O(2W)#1                                                | 91.84(8)   | O(1W)#1-Cd(1)-O(2W)#1 | 88.16(8)   |  |
| O(1)-Cd(1)-O(2W)#1                                                 | 87.63(8)   | O(1)#1-Cd(1)-O(2W)#1  | 91.84(8)   |  |
| O(1W)-Cd(1)-O(2W)                                                  | 88.16(8)   | O(1W)#1-Cd(1)-O(2W)   | 91.84(8)   |  |
| O(1)-Cd(1)-O(2W                                                    | 92.37(8)   | N(1)-Cd(2)-O(3)#2     | 89.93(8)   |  |
| O(2W)#1-Cd(1)-O(2W)                                                | 179.999(1) | N(1)#2-Cd(2)-N(1)     | 180.00(10) |  |
| N(1)#2-Cd(2)-O(3)                                                  | 89.93(8)   | N(1)-Cd(2)-O(3)       | 90.07(9)   |  |
| O(3)-Cd(2)-O(3)#2                                                  | 180.0      | N(1)#2-Cd(2)-S(1)     | 94.85(7)   |  |
| N(1)-Cd(2)-S(1)                                                    | 85.15(7)   | O(3)-Cd(2)-S(1)       | 73.36(5)   |  |
| O(3)#2-Cd(2)-S(1)                                                  | 106.64(5)  | N(1)#2-Cd(2)-S(1)#2   | 85.15(7)   |  |
| N(1)-Cd(2)-S(1)#2                                                  | 94.86(7)   | O(3)-Cd(2)-S(1)#2     | 106.64(5)  |  |
| O(3)#2-Cd(2)-S(1)#2                                                | 73.36(5)   | S(1)-Cd(2)-S(1)#2     | 179.999(1) |  |

 Table S5. Selected bond distances (Å) and angles (°) for complex 5

Symmetry code: #1 - x, -y + 2, -z; #2 - x, -y + 1, -z; #3 - x - 1, -y, -z - 1

| Table 55. Selected bolid distances (A) and angles () for complex 5 |           |                   |           |  |  |
|--------------------------------------------------------------------|-----------|-------------------|-----------|--|--|
| Cd(1)-N(3)                                                         | 2.262(2)  | Cd(1)-N(2)        | 2.280(3)  |  |  |
| Cd(1)-N(1)                                                         | 2.342(3)  | Cd(1)-O(2)#1      | 2.478(3)  |  |  |
| Cd(1)-O(4)#1                                                       | 2.489(2)  | Cd(1)-O(1)        | 2.512(2)  |  |  |
| Cd(1)-O(3)                                                         | 2.584(3)  | N(3)-Cd(1)-N(2)   | 173.04(9) |  |  |
| N(3)-Cd(1)-N(1)                                                    | 90.30(9)  | N(2)-Cd(1)-N(1)   | 90.90(9)  |  |  |
| N(3)-Cd(1)-O(2)#1                                                  | 95.62(8)  | N(2)-Cd(1)-O(2)#1 | 88.34(9)  |  |  |
| N(1)-Cd(1)-O(2)#1                                                  | 135.26(9) | N(3)-Cd(1)-O(4)#1 | 86.87(8)  |  |  |
| N(2)-Cd(1)-O(4)#1                                                  | 100.07(9) | N(1)-Cd(1)-O(4)#1 | 83.98(9)  |  |  |
| O(2)#1-Cd(1)-O(4)#1                                                | 52.30(8)  | N(3)-Cd(1)-O(1)   | 86.44(8)  |  |  |
| N(2)-Cd(1)-O(1)                                                    | 87.94(8)  | N(1)-Cd(1)-O(1)   | 136.00(9) |  |  |

| O(2)#1-Cd(1)-O(1)                                                                                    | 88.69(8)  | O(4)#1-Cd(1)-O(1) | 139.42(8) |  |  |
|------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------|--|--|
| N(3)-Cd(1)-O(3)                                                                                      | 89.80(9)  | N(2)-Cd(1)-O(3)   | 83.47(9)  |  |  |
| N(1)-Cd(1)-O(3)                                                                                      | 85.09(9)  | O(2)#1-Cd(1)-O(3) | 139.04(9) |  |  |
| O(4)#1-Cd(1)-O(3)                                                                                    | 168.56(8) | O(1)-Cd(1)-O(3)   | 51.07(8)  |  |  |
| Symmetry code: $\#1 - x, -y, -z; \#2 - x + 1, -y, -z + 1; \#3 - x, -y + 1, -z + 1; \#4 - x + 1, -y,$ |           |                   |           |  |  |
| - <i>z</i>                                                                                           |           |                   |           |  |  |

Table S6. Hydrogen-bonding geometries (Å, °) of complexes 1, 2 and 4

| D–H···A        | D–H  | Н…А  | D····A    | D–H…A |
|----------------|------|------|-----------|-------|
|                |      | 1    |           |       |
| С11-Н11А…О2    | 0.97 | 2.58 | 3.283(52) | 129   |
|                |      | 2    |           |       |
| O2W–H2WA…O2    | 0.85 | 2.01 | 2.749(93) | 148   |
|                |      | 4    |           |       |
| O1W-H1WA····O4 | 0.85 | 2.14 | 2.713(29) | 125   |



**Fig. S1.** The 1D [Zn-biim-4]<sub>n</sub> meso-helical chain in complex 1.



**Fig. S2.** View of the 1D linear chain constructed by Zn<sup>II</sup> ions and 2-CMSN anions in complex **1**.



Fig. S3. View of the 1D linear chain constructed by Co<sup>II</sup> ions and biim-4 ligands in

complex 2.



Fig. S4. The simplified representation of the 2D structure in complexes 2–4.



Fig. S5. The 3D supramolecular architecture connected by hydrogen bonding interactions in 2.



**Fig. S6.** (a) The coordination environment of  $Ni^{II}$  centers in complex 3 with 30% thermal ellipsoids; (b) The 2D layer in complex 3.



**Fig. S7.** (a) The coordination environment of  $Cd^{II}$  center in complex 4 with 30% thermal ellipsoids; (b) The 2D layer in complex 4; (c) The 3D supramolecular architecture connected by hydrogen bonding interactions.



Fig. S8. The 3D framework of complex 5.





Fig. S9. (a)–(e) The IR spectra of complexes 1–5; (f) The IR spectrum of complex 5 after the photocatalysis experiments.





Fig. S10. The PXRD curves of complexes 1–5.







**Fig. S12.** Absorption spectra of the MB solution during the decomposition reaction under UV light irradiation without catalyst.





**Supplementary Material** 

**Fig. S13.** Absorption spectra of the MB solution during the decomposition reaction under UV light irradiation with the use of complexes **1–4**.