SUPPLEMENTARY MATERIAL

Temperature responsive self-assemblies of "kinked" amphiphiles

Jennifer S. Squire,^a Grégory Durand,^{b,c} Lynne Waddington,^d Alessandra Sutti^e and

Luke C. Henderson^{a,e}*

^a Strategic Research Centre for Chemistry and Biotechnology, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong, Victoria, Australia 3216

^bUnité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 &2,

Institut des Biomolécules Max Mousseron, Faculté de Pharmacie, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France.

^cUniversité d'Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, F-84000 Avignon, France;

^d CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria, 3168, Australia.

^e Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong, Victoria, Australia 3216

*Corresponding author. Email: <u>luke.henderson@deakin.edu.au</u>

- Page S2-S13 ¹H and ¹³C NMR for all novel compounds
- Page S14 Representative output of DLS showing particle size distribution
- Page S14 Representative output for determination of CAC's
- Page S15 CryoTEM
- Page S16 Correlograms from temperature studies

4,7-methano-1H-isoindole-1,3(2H)-dione,3a,4,7,7a-tetrahydro-2-[2-(2-hydroxyethoxy)ethyl] 6

¹H NMR Spectrum:

2-(2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2*H*-4,7-methanoisoindol-2-yl)ethoxy)ethyl 4methylbenzenesulfonate 7

¹H NMR Spectrum:

2-(2-(-5,6-dihydroxy-1,3-dioxooctahydro-1H-4,7-methanoisoindol-2-yl)ethoxy)ethyl 4methylbenzenesulfonate 8

¹H NMR Spectrum:

2-(2-(-5,7-dioxo-2-undecyloctahydro-6H-4,8-methano[1,3]dioxolo[4,5-f]isoindol-6-yl)ethoxy)ethyl 4-methylbenzenesulfonate 9

¹H NMR Spectrum:

2-(2-(-5,7-dioxo-2-pentadecyloctahydro-6H-4,8-methano[1,3]dioxolo[4,5-f]isoindol-6yl)ethoxy)ethyl 4-methylbenzenesulfonate 10

¹H NMR Spectrum:

6-(2-(2-((2-((2)-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl)(methyl)amino)ethoxy)ethyl)-2undecylhexahydro-5H-4,8-methano[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione 11

¹H NMR Spectrum:

6-(2-(2-((2-(4-((Z)-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl)(methyl)amino)ethoxy)ethyl)-2pentadecylhexahydro-5H-4,8-methano[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione 12

¹H NMR Spectrum:

2-undecylhexahydro-5*H*-6-(2-(2-azidoethoxy)ethyl)-4,8-methano[1,3]dioxolo[4,5-f]isoindole-5,7(6*H*)-dione 13

¹H NMR Spectrum:

2-pentadecylhexahydro-5H-6-(2-(2-azidoethoxy)ethyl)-4,8-methano[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione 14

¹H NMR Spectrum:

Ethanamine, 2-[4-[(1E)-1,2-diphenyl-1-buten-1-yl]phenoxy]-N,N-methyl-propargyl 17

¹H NMR Spectrum:

6-(2-(2-(4-(((2-(4-((Z)-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl)(methyl)amino)methyl)-1H-1,2,3triazol-1-yl)ethoxy)ethyl)-2-undecylhexahydro-5H-4,8-methano[1,3]dioxolo [4,5-f]isoindole-5,7(6H)-dione 18

¹H NMR Spectrum:

6-(2-(2-(4-(((2-(4-((Z)-1,2-diphenylbut-1-en-1-yl)phenoxy)ethyl)(methyl)amino)methyl)-1H-1,2,3triazol-1-yl)ethoxy)ethyl)-2-pentadecylhexahydro-5H-4,8-methano[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione 19

¹H NMR Spectrum:

Representative DLS output demonstrating the particle size distribution of compound 19

Representative output for the determination of CAC's using pyrene encapsulation (Compound 19)

CryoTEM of 19 showing amorphous aggregates under TEM conditions

Fused assembly of 18

Correlogram from temperature studies

Compound 1:

Compound 2:

Compound 3:

Compound 4:

35 °C

Compound 18:
