10.1071/CH13282_AC

© CSIRO 2013

Australian Journal of Chemistry 2013, 66(11), 1323-1333

Supplementary Material

N,N-Dialkyl-*N*²Chlorosulfonyl Chloroformamidines in Heterocyclic Synthesis. Part X. The First Pyrazolo[1,5-*b*][1,2,4,6]thiatriazine Derivatives and their Unusual Reactions with Acylating Agents.

Rebecca E. Norman,^A Michael V. Perkins,^A Andris J. Liepa,^B and Craig L. Francis^{B,C}

^ASchool of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia. ^BCSIRO Materials Science and Engineering, Clayton, VIC 3168, Australia.

^CCorresponding author. Email: craig.francis@csiro.au

Pages S2-S13	¹ H NMR and ¹³ C NMR spectra of pyrazolo[1,5-b][1,2,4,6]thiatriazines 3
Pages S14-S15	$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of bis adducts 5a and 5b
Page S16	Long range correlation HMBC spectrum of bis-adduct 5b
Pages S17-S19	^1H NMR and ^{13}C NMR spectra of unstable chlorides $\textbf{6/7}$ and methyl
	sulfonates 8/9
Pages S20-S24	$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of pyridine and pyridazine adducts 11
Pages S25-S26	Short and long range correlation HMQC and HMBC spectra of pyridazine
	adduct 11c
Page S27	Variable temperature ¹ H NMR spectra of pyridazine adduct 11c
Page S28	ORTEP diagrams of pyridine adduct 11a generated in <i>Mercury - version 3.0</i>

¹H NMR spectrum of **3a** (DMSO-*d*⁶)

¹³C NMR spectrum of **3a** (DMSO-d⁶)

¹H NMR spectrum of **3b** (DMSO-*d*⁶)

¹³C NMR spectrum of **3b** (DMSO- d°)

¹H NMR spectrum of **3c** (DMSO-*d*⁶)

¹³C NMR spectrum of **3c** (DMSO-*d*⁶)

¹H NMR spectrum of **3d** (DMSO-*d*⁶)

 13 C NMR spectrum of **3d** (DMSO- d^6)

¹H NMR spectrum of **3e** (DMSO-*d*⁶)

¹³C NMR spectrum of **3e** (DMSO-*d*⁶)

¹H NMR spectrum of **3f** (DMSO-*d*⁶)

¹³C NMR spectrum of **3f** (DMSO-*d*⁶)

¹H NMR spectrum of **3g** (DMSO- d^6)

¹³C NMR spectrum of **3g** (DMSO-*d*⁶)

¹H NMR spectrum of **3h** (DMSO-*d*⁶)

¹H NMR spectrum of **3i** (DMSO-*d*⁶)

 \cap

¹H NMR spectrum of **3j** (DMSO-*d*⁶)

¹³C NMR spectrum of **3j** (DMSO-*d*⁶)

¹H NMR spectrum of **3I** (DMSO-*d*⁶)

¹³C NMR spectrum of **3I** (DMSO-d⁶)

¹H NMR spectrum of bis adduct **5a*** (DMSO-*d*⁶)

* crystallises with CH_2Cl_2 . Please see notes on X-ray structure.

¹³C NMR spectrum of bis adduct **5a*** (DMSO-*d*⁶)

¹H NMR spectrum of bis adduct **5b** (DMSO-*d*⁶)

 ^{13}C NMR spectrum of bis adduct **5b** (DMSO- d^6)

¹H NMR spectrum of unstable chlorides **6/7** (CDCl₃)

 ^{13}C NMR spectrum of unstable chlorides 6/7 (CDCl_3)

isomer 9 NH_2' isomer 9 0 and water 88 Ν Ò Ó H_2N Ò C isomer 9 9 8 (major) 0 0.5 Normalized Intensity 34 0.4 0.3 -1.35 -8.19 t.29 -4.30 0.2 -4.91 -3.92 -4.31 2 42 0.1 0 1.00 0.76 3.84 7.18 2.0 1.5 1.0 Ľ 8.5 8.0 7.5 6.0 5.5 3.0 2.5 7.0 6.5

 ^1H NMR spectrum of unstable methyl sulfonates 8/9 (CDCl_3)

 ^{13}C NMR spectrum of unstable methyl sulfonates 8/9 (CDCl_3)

 ^{13}C NMR spectrum of pyridine adduct $\textbf{11a}~(\text{DMSO-d}^6)$

¹H NMR spectrum of pyridine adduct **11b** (DMSO-d⁶)

¹³C NMR spectrum of pyridine adduct **11b** (DMSO-d⁶)

¹H NMR spectrum of pyridazine adduct **11c** (methanol- d^4)

 ^{13}C NMR spectrum of pyridazine adduct 11c (methanol-d^4)

¹³C NMR spectrum of pyridazine adduct **11c** (DMSO-d⁶) 26°C d1=2

 ^{13}C NMR spectrum of pyridazine adduct 11c (DMSO-d⁶) 65°C d1=5

Variable temperature ¹H NMR spectra of pyridazine adduct **11c** (DMSO- d^6)

ORTEP diagrams of pyridine adduct **11a** generated in *Mercury -version 3.0* showing H-bonding between pyridine ring NH and N7 (pyrazole ring) of an adjacent molecule (upper left); packing within the crystal lattice (upper right, below).

