Supplementary Material

Temperature-driven and reversible assembly of homopolyelectrolytes derived from suitably-designed ionic liquids in water

Yuki Kohno,AB Yuki Deguchi,AB Naomi Inoue,C and Hiroyuki Ohno*AB

ADepartment of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
BFunctional Ionic Liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
CMaterial Analysis Research Laboratories, TEIJIN Ltd, 4-3-2, Asahigaoka, Hino, Tokyo 191-8512, Japan

*E-mail: ohnoh@cc.tuat.ac.jp
Fig. S1. 1H NMR chart of P-Cl in CD$_3$OD.
Fig. S2. 1H NMR chart of P-C4 in CD$_3$OD.

Fig. S3. 1H NMR chart of P-C5 in CD$_3$OD.
Fig. S4. 1H NMR chart of P-C6 in CD$_3$OD.

Fig. S5. 1H NMR chart of N-Cl in CD$_3$OD.
Fig. S6. 1H NMR chart of N-4 in CD$_3$OD.

Fig. S7. 1H NMR chart of N-5 in CD$_3$OD.
Fig. S8. 1H NMR chart of N-C6 in CD$_3$OD.

Fig. S9. GPC chart of phosphonium-based poly(IL)s.
Fig. S10. GPC curves of ammonium-based poly(IL)s.

Fig. S11. Temperature-dependent change in transmittance for P-C5 (3.0 wt%); (■): heating process, (▲): cooling process.
Fig. S12. Effect of poly(IL) species on transmittance change upon heating; (■): N-C6, (●): P-C5, (▲): N-C5. Polymer concentration was set as 3.0 wt%.
Fig. S13. DLS profiles for P-C5 (3.0 wt%) upon increasing temperatures.
Fig. S14. Microscopic photographs for P-C5 (5.0 wt %) at 30 °C (above) and after heating at 40 °C (below) at a magnification of 400 times.