10.1071/CH13476_AC
© CSIRO 2014
Australian Journal of Chemistry 2014, 67(4), 544-554

Supplementary Material

Construction of Vinyl Polymer and Polyester or Polyamide Units in a Single Polymer Chain via Metal-Catalyzed Simultaneous Chain- and Step-Growth Radical Polymerization of Various Monomers

Masato Mizutani, Kotaro Satoh ${ }^{\mathrm{A}}$ and Masami Kamigaito ${ }^{\mathrm{A}}$

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
${ }^{\text {A }}$ Corresponding authors. Email: satoh@apchem.nagoya-u.ac.jp; kamigait@apchem.nagoya-u.ac.jp

Contents

Fig. S1. Simultaneous polymerization of MA and $\mathbf{1}\left([\mathrm{MA}]_{0} /[\mathbf{1}]_{0}=1 / 1\right)$
Fig. S2. Simultaneous polymerization of MA and $\mathbf{2}\left([\mathrm{MA}]_{0} /[2]_{0}=1 / 1\right)$
Fig. S3. Simultaneous polymerization of MA and $\mathbf{3}\left([\mathrm{MA}]_{0} /[\mathbf{3}]_{0}=1 / 1\right)$
Fig. S4. Simultaneous polymerization of MA and $4\left([\mathrm{MA}]_{0} /[4]_{0}=1 / 1\right)$
Fig. S5. Concentration of remaining functional groups
Fig. S6. Simultaneous polymerization of EA and $\mathbf{1}\left([\mathrm{EA}]_{0} /[\mathbf{1}]_{0}=1 / 1\right)$
Fig. S7. Simultaneous polymerization of $n \mathrm{BA}$ and $\mathbf{1}\left([n \mathrm{BA}]_{0} /[\mathbf{1}]_{0}=1 / 1\right)$
Fig. S8. \quad Simultaneous polymerization of $t \mathrm{BA}$ and $\mathbf{1}\left([t \mathrm{BA}]_{0} /[\mathbf{1}]_{0}=1 / 1\right)$
Fig. S9. Simultaneous polymerization of DMAEA and $\mathbf{1}$ ([DMAEA $]_{0} /[\mathbf{1}]_{0}=1 / 1$)
Fig. S10. Simultaneous polymerization of DMAEA and $\mathbf{1}\left([\mathrm{HEA}]_{0} /[\mathbf{1}]_{0}=1 / 1\right)$
Fig. S11. Simultaneous polymerization of MA and $\mathbf{1}\left([\mathrm{MA}]_{0} /[\mathbf{1}]_{0}=39 / 1\right)$
Fig. S12. Simultaneous polymerization of EA and $\mathbf{1}\left([E A]_{0} /[\mathbf{1}]_{0}=39 / 1\right)$
Fig. S13. Simultaneous polymerization of MA and $\mathbf{2}\left([E A]_{0} /[\mathbf{2}]_{0}=39 / 1\right)$
Fig. S14. Simultaneous polymerization of MA and $\mathbf{3}\left([E A]_{0} /[3]_{0}=39 / 1\right)$
Fig. S15. Simultaneous polymerization of MA and $4\left([E A]_{0} /[4]_{0}=39 / 1\right)$
Fig. S16. Simultaneous polymerization of $n \mathrm{BA}$ and $\mathbf{1}\left([n \mathrm{BA}]_{0} /[1]_{0}=39 / 1\right)$
Fig. S17. Simultaneous polymerization of $t \mathrm{BA}$ and $\mathbf{1}\left([t \mathrm{BA}]_{0} /[\mathbf{1}]_{0}=39 / 1\right)$
Fig. S18. Simultaneous polymerization of DMAEA and $\mathbf{1}$ ([DMAEA $]_{0} /[\mathbf{1}]_{0}=39 / 1$)
Fig. S19. Simultaneous polymerization of DMAEA and $\mathbf{1}\left([\mathrm{HEA}]_{0} /[\mathbf{1}]_{0}=39 / 1\right.$)

Fig. S1. Simultaneous chain- and step-growth radical polymerization of MA and $\mathbf{1}$ in toluene at $80{ }^{\circ} \mathrm{C}:[\mathrm{MA}]_{0}=2.0 \mathrm{M} ;[1]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of MA and $\mathbf{1}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of MA and $\mathbf{1}$. (C) Size-exclusion chromatograms of the obtained copolymers of MA and $\mathbf{1}$.

Fig. S2. Simultaneous chain- and step-growth radical polymerization of MA and $\mathbf{2}$ in toluene at $80{ }^{\circ} \mathrm{C}:[\mathrm{MA}]_{0}=2.0 \mathrm{M} ;[2]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of MA and 2 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of MA and 2. (C) Size-exclusion chromatograms of the obtained copolymers of MA and $\mathbf{2}$.

Fig. S3. Simultaneous chain- and step-growth radical polymerization of MA and $\mathbf{3}$ in toluene at $80{ }^{\circ} \mathrm{C}:[\mathrm{MA}]_{0}=2.0 \mathrm{M} ;[3]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of MA and $\mathbf{3}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of MA and 3. (C) Size-exclusion chromatograms of the obtained copolymers of MA and 3 .

Fig. S4. Simultaneous chain- and step-growth radical polymerization of MA and 4 in toluene at $80{ }^{\circ} \mathrm{C}:[\mathrm{MA}]_{0}=2.0 \mathrm{M} ;[4]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of MA and $\mathbf{4}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of MA and 4. (C) Size-exclusion chromatograms of the obtained copolymers of MA and 4.

Fig. S5. Simultaneous chain- and step-growth radical polymerization of MA and (A) 1, (B) 2, (C) 3, or (D) $\mathbf{4}$ in toluene at $80^{\circ} \mathrm{C}:[\mathrm{MA}]_{0}=2.0 \mathrm{M} ;[\mathbf{1 - 4}]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=$ 100 mM . Concentration of remaining unconjugated $\mathrm{C}=\mathrm{C}$, original $\mathrm{C}-\mathrm{Cl}, \mathrm{MA}-\mathrm{Cl}$, and sum of the active $\mathrm{C}-\mathrm{Cl}$ (original $\mathrm{C}-\mathrm{Cl}+\mathrm{MA}-\mathrm{Cl}$) bonds in the reaction mixture measured by ${ }^{1} \mathrm{H}$ NMR.

Fig. S6. Simultaneous chain- and step-growth radical polymerization of EA and $\mathbf{1}$ in toluene at $80^{\circ} \mathrm{C}:[\mathrm{EA}]_{0}=2.0 \mathrm{M} ;[1]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of EA and 1 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of EA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of EA and 1.

Fig. S7. Simultaneous chain- and step-growth radical polymerization of $n \mathrm{BA}$ and $\mathbf{1}$ in toluene at $80{ }^{\circ} \mathrm{C}:[n \mathrm{BA}]_{0}=2.0 \mathrm{M} ;[1]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of $n \mathrm{BA}$ and 1 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of $n \mathrm{BA}$ and $\mathbf{1}$. (C) Size-exclusion chromatograms of the obtained copolymers of $n \mathrm{BA}$ and $\mathbf{1}$.

Fig. S8. Simultaneous chain- and step-growth radical polymerization of $t \mathrm{BA}$ and $\mathbf{1}$ in toluene at $80{ }^{\circ} \mathrm{C}:[t \mathrm{BA}]_{0}=2.0 \mathrm{M} ;[1]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of $t \mathrm{BA}$ and $\mathbf{1}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of $t \mathrm{BA}$ and $\mathbf{1}$. (C) Size-exclusion chromatograms of the obtained copolymers of $t \mathrm{BA}$ and 1 .

Fig. S9. Simultaneous chain- and step-growth radical polymerization of DMAEA and $\mathbf{1}$ in toluene at $80{ }^{\circ} \mathrm{C}:[\mathrm{DMAEA}]_{0}=2.0 \mathrm{M} ;[1]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\text { HMTETA }]_{0}=100 \mathrm{mM}$. (A) Consumption of DMAEA and $\mathbf{1}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of DMAEA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of DMAEA and $\mathbf{1}$.

Fig. S10. Simultaneous chain- and step-growth radical polymerization of HEA and $\mathbf{1}$ in toluene at $80{ }^{\circ} \mathrm{C}:[\mathrm{HEA}]_{0}=2.0 \mathrm{M} ;[\mathbf{1}]_{0}=2.0 \mathrm{M} ;[\mathrm{CuCl}]_{0}=100 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of HEA and $\mathbf{1}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of HEA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of HEA and 1.

Fig. S11. Simultaneous chain- and step-growth radical polymerization of MA and $\mathbf{1}$ in bulk at $80{ }^{\circ} \mathrm{C}:[\mathrm{MA}]_{0}=9.75 \mathrm{M} ;[\mathbf{1}]_{0}=0.25 \mathrm{M} ;[\mathrm{CuCl}]_{0}=10 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=10 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=50$ mM . (A) Consumption of MA and 1 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of MA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of MA and $\mathbf{1}$.

Fig. S12. Simultaneous chain- and step-growth radical polymerization of EA and $\mathbf{1}$ in bulk at $80^{\circ} \mathrm{C}$: $[\mathrm{EA}]_{0}=7.8 \mathrm{M} ;[1]_{0}=0.20 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM} .(\mathrm{A})$ Consumption of EA and 1 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of EA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of EA and 1.

Fig. S13. Simultaneous chain- and step-growth radical polymerization of EA and $\mathbf{1}$ in bulk at $80^{\circ} \mathrm{C}$: $[E A]_{0}=7.8 \mathrm{M} ;[2]_{0}=0.20 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of EA and 2 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of EA and 2. (C) Size-exclusion chromatograms of the obtained copolymers of EA and 2.

Fig. S14. Simultaneous chain- and step-growth radical polymerization of EA and $\mathbf{3}$ in bulk at $80^{\circ} \mathrm{C}$: $[\mathrm{EA}]_{0}=7.8 \mathrm{M} ;[3]_{0}=0.20 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of EA and 3 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of EA and 3. (C) Size-exclusion chromatograms of the obtained copolymers of EA and 3.

Fig. S15. Simultaneous chain- and step-growth radical polymerization of EA and $\mathbf{4}$ in bulk at $80^{\circ} \mathrm{C}$: $[E A]_{0}=7.8 \mathrm{M} ;[4]_{0}=0.20 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100 \mathrm{mM}$. (A) Consumption of EA and 4 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of EA and 4. (C) Size-exclusion chromatograms of the obtained copolymers of EA and 4.

Fig. S16. Simultaneous chain- and step-growth radical polymerization of $n \mathrm{BA}$ and $\mathbf{1}$ in bulk at $80{ }^{\circ} \mathrm{C}:[n \mathrm{BA}]_{0}=6.24 \mathrm{M} ;[1]_{0}=0.16 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100$ mM . (A) Consumption of $n \mathrm{BA}$ and $\mathbf{1}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of $n \mathrm{BA}$ and 1 . (C) Size-exclusion chromatograms of the obtained copolymers of $n \mathrm{BA}$ and $\mathbf{1}$.

Fig. S17. Simultaneous chain- and step-growth radical polymerization of $t \mathrm{BA}$ and $\mathbf{1}$ in bulk at $80{ }^{\circ} \mathrm{C}:[t \mathrm{BA}]_{0}=6.24 \mathrm{M} ;[\mathbf{1}]_{0}=0.16 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100$ mM . (A) Consumption of $t \mathrm{BA}$ and 1 measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of $t \mathrm{BA}$ and $\mathbf{1}$. (C) Size-exclusion chromatograms of the obtained copolymers of $t \mathrm{BA}$ and $\mathbf{1}$.

Fig. S18. Simultaneous chain- and step-growth radical polymerization of DMAEA and $\mathbf{1}$ in bulk at $80^{\circ} \mathrm{C}:[\mathrm{DMAEA}]_{0}=5.85 \mathrm{M} ;[1]_{0}=0.15 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=$ 100 mM . (A) Consumption of DMAEA and 1 measured by gas chromatography and original C-Cl and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of DMAEA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of DMAEA and $\mathbf{1}$.

Fig. S19. Simultaneous chain- and step-growth radical polymerization of HEA and $\mathbf{1}$ in bulk at $80{ }^{\circ} \mathrm{C}:[\mathrm{HEA}]_{0}=5.85 \mathrm{M} ;[1]_{0}=0.15 \mathrm{M} ;[\mathrm{CuCl}]_{0}=50 \mathrm{mM} ;\left[\mathrm{CuCl}_{2}\right]_{0}=50 \mathrm{mM} ;[\mathrm{HMTETA}]_{0}=100$ mM . (A) Consumption of HEA and $\mathbf{1}$ measured by gas chromatography and original $\mathrm{C}-\mathrm{Cl}$ and unconjugated $\mathrm{C}=\mathrm{C}$ bonds measured by ${ }^{1} \mathrm{H}$ NMR. (B) M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the obtained copolymers vs total monomer conversion of HEA and 1. (C) Size-exclusion chromatograms of the obtained copolymers of HEA and $\mathbf{1}$.

