Supplementary Material Bacterial enzyme responsive polymersomes: A closer look at the degradation mechanism of PEG-block-PLA vesicles Katrin-Stephanie Tücking, Stephan Handschuh-Wang, and Holger Schönherr* Physical Chemistry I, Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany. Email: schoenherr@chemie.uni-siegen.de *Figure S-1*. Section of the ¹H-NMR spectrum for the determination of the conversion of *cis*-lactide into PLA. $$conversion = \frac{i_{M} / N_{cru}(H)}{\left(i_{M} / N_{cru} + i_{M0} \times N(\boldsymbol{H})\right)}$$ Determination of the conversion of *cis*-lactide into poly(lactic acid): intensity of the polymer (i_M) per number of constitutional repeating units N_{cru} divided by the sum of i_M per number of constitutional repeating units N_{cru} and the intensity of the monomer signal (i_{Mo}) times the number of H signals per monomer N(H). Figure S-2. Fluorescence spectra of OPA as a measure for the amount of lactic acid formed from degraded PEG_{114} -b- PLA_{326} polymersomes after 12 d incubation at 37°C with *proteinase K* in phosphate buffer at pH 8 (filled squares) and with NaOH at pH 12 (open triangles).