10.1071/CH13675_AC ©CSIRO 2014 Australian Journal of Chemistry 2014, 67(11), 1679-1687

SUPPLEMENTARY MATERIAL

A Series of Enthalpy/Entropy-Driven Reversible Dissolution/Reorganization Equilibriums in the System of Cu(NO₃)₂-HL-GdX₃-H₂O (HL = 5-methylpyrazine-2-carboxylic acid, X = Cl, Br, NO₃, ClO₄)

Sheng Zhang, Qi Yang, Xiang-Yu Liu, Gang Xie, Qing Wei, San-Ping Chen,* Sheng-Li Gao

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China

Corresponding author

Dr. Sanping Chen

E-mail: sanpingchen@126.com; sanpingchen@126.c

Compound	1	2	3	4	5
Empirical formula	$C_{12}H_{10}CuN_4O_4$	$C_{12}H_{18}Cl_{2}Cu_{2}N_{4}O_{8} \\$	C ₆ H ₅ Cl ₂ CuKN ₂ O ₂	$C_6H_7BrCuN_2O_3$	$C_{12}H_{20}CuN_6O_{14}$
Formula weight	337.78	544.28	310.66	298.59	535.88
Crystal system	Monoclinic	Triclinic	orthorhombic	Monoclinic	Monoclinic
space group	$P2_1/c$	P-1	Pbca	$P2_1/c$	$P2_1/c$
a (Å)	11.3111(13)	3.8124(19)	9.1599(16)	10.3624(12)	8.374(2)
<i>b</i> (Å)	7.6700(8)	11.366(6)	7.4074(13)	6.5989(8)	16.231(5)
<i>c</i> (Å)	7.5434(9)	11.510(6)	29.564(5)	13.4372(16)	7.673(2)
α (°)	90.00	111.353(8)	90	90.00	90.00
β (°)	105.415(2)	96.305(9)	90	108.446(2)	98.509(5)
γ (°)	90.00	98.768(9)	90	90.00	90.00
$V(\text{\AA}^3)$	630.89(12)	451.6(4)	2005.9(6)	871.63(18)	1031.4(5)
Ζ	2	1	8	4	2
F000	342.0	274.0	1224.0	580.0	342.0
Goodness-of-fit	1 000	1.000	0.007	1.017	0.000
on F^2	1.000	1.029	0.896	1.017	0.890
5 . 1 . (1 .1.)	R1 = 0.0563	$R_{I} = 0.0906$	$R_{I} = 0.0478$	$R_{I} = 0.0438$	R1 = 0.0594
R indices (all data)	wR2 = 0.1031	$wR_2 = 0.2092$	$wR_2 = 0.0812$	$wR_2 = 0.0679$	wR2 = 0.1126
Final R indices	R1 = 0.0348	$R_1 = 0.0735$	$R_{I} = 0.0316$	$R_{I} = 0.0346$	R1 = 0.0398
[<i>I</i> >2sigma(<i>I</i>)]	wR2 = 0.0858	$wR_2 = 0.1999$	$wR_2 = 0.0766$	$wR_2 = 0.0641$	wR2 = 0.1038

Table S1 Crystal data and structure refinement details for 1-5 and L_{Cu} - L_{Cu5} .

L _{Cu}	L _{Cu1}	L _{Cu2}	L _{Cu3}	L _{Cu4}	L_{Cu5}
$C_{12}H_{18}CuN_4O_8$	$C_{12}H_{18}CuN_4O_8 \\$	$C_{12}H_{18}CuN_4O_8$	$C_{12}H_{18}CuN_4O_8$	$C_{12}H_{18}CuN_4O_8$	$C_{12}H_{18}CuN_4O_8$
819.69	819.69	819.69	819.69	819.69	819.69
Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
P-1	P-1	P-1	P-1	P-1	P-1
8.3401(9)	8.3260(10)	8.337(5)	8.3260(10)	8.129(3)	8.374(2)
10.6016(11)	10.5880(14)	10.583(6)	10.5880(14)	10.471(4)	16.231(5)
11.2514(12)	11.2410(16)	11.250(7)	11.2410(16)	10.955(4)	7.673(2)
64.429(2)	64.4220(10)	64.399(11)	64.4220(10)	66.751(6)	90.00
85.378(2)	85.386(2)	85.352(13)	85.386(2)	81.591(7)	98.509(5)
68.450(2)	68.4390(10)	68.436(12)	68.4390(10)	78.088(6)	90.00
831.05(15)	827.68(19)	828.9(9)	827.68(19)	836.1(5)	836.1(5)
1	1	2	1	2	2
422.0	422.0	422.0	422.0	580.0	342.0
1.040	1.045	0.801	1.009	1.121	1.176
$R_1 = 0.0499$	$R_{I} = 0.0436$	$R_I = 0.2142$	$R_{I} = 0.0863$	$R_1 = 0.2136$	R1 = 0.2070
$wR_2 = 0.1791$	$wR_2 = 0.1076$	$wR_2 = 0.0682$	$wR_2 = 0.1176$	$wR_2 = 0.2679$	wR2 = 0.2669
$R_I = 0.0838$	$R_{I} = 0.0673$	$R_1 = 0.0666$	$R_{I} = 0.0494$	$R_{I} = 0.0845$	R1 = 0.0845
$wR_2 = 0.1278$	$wR_2 = 0.0961$	$wR_2 = 0.0569$	$wR_2 = 0.1022$	$wR_2 = 0.2041$	wR2 = 0.2033

^a $R = \Sigma I |F_0| - |F_C| I / \Sigma |F_0|, wR_2 = [\Sigma [w(F_0^2 - F_C^2)^2] / \Sigma [(F_0^2)^2]]^{1/2}$

Compound 1			
Cu(1)-O(1)	1.951(2)	O(1)-Cu(1)-N(1)	83.67(11)
Cu(1)-O(1)	1.951(2)	O(1)-Cu(1)-N(1)	96.33(11)
Cu(1)-N(1)	1.978(3)	O(1)-Cu(1)-N(1)	96.33(11)
Cu(1)-N(1)	1.978(3)	O(1)-Cu(1)-N(1)	83.67(11)
O(1)-Cu(1)-O(1)	180	N(1)-Cu(1)-N(1)	180
Compound 2			
Cu(1)-O(3)	1.917(6)	O(3)-Cu(1)-Cl(1)	92.99(19)
Cu(1)-O(1)	1.969(5)	O(1)-Cu(1)-Cl(1)	166.27(19)
Cu(1)-N(1)	1.989(6)	N(1)-Cu(1)-Cl(1)	94.07(18)
Cu(1)-Cl(1)	2.246(2)	O(3)-Cu(1)-Cl(1)	95.1(2)
Cu(1)-Cl(1)	2.692(2)	O(1)-Cu(1)-Cl(1)	92.59(19)
O(3)-Cu(1)-O(1)	89.3(2)	N(1)-Cu(1)-Cl(1)	89.96(15)
O(3)-Cu(1)-N(1)	170.4(3)	Cl(1)-Cu(1)-Cl(1)	100.67(8)
O(1)-Cu(1)-N(1)	82.3(2)		
Compound 3			
Cu(1)-O(2)	1.965(2)	C(1)-K(1)-Cl(2)	154.18(8)
Cu(1)-N(1)	2.015(3)	O(1)-K(1)-Cl(2)	95.25(6)
Cu(1)-Cl(1)	2.2455(10)	O(2)-K(1)-Cl(2)	56.69(6)
Cu(1)-Cl(2)	2.2797(10)	O(2)-K(1)-Cl(2)	91.25(5)
Cu(1)-K(1)	3.7678(11)	O(1)-K(1)-Cl(2)	69.74(5)
K(1)-O(2)	2.812(2)	Cl(2)-K(1)-Cl(2)	147.66(3)
K(1)-O(2)	2.842(2)	C(1)-K(1)-Cl(2)	84.83(7)

K(1)-O(1)

K(1)-Cl(2)

K(1)-C(1)

2.930(3)

3.0663(13)

3.147(4)

Cl(2)-K(1)-Cl(2)

O(1)-K(1)-Cl(1)

O(2)-K(1)-Cl(1)

71.81(3)

86.11(6)

134.99(6)

Table S2 Selected bond lengths [Å] and angles [°] for 1-5 and $L_{Cu}\mbox{-} L_{Cu5}\mbox{-}$

K(1)-Cl(2)	3.2998(12)	O(2)-K(1)-Cl(1)	63.06(5)
K(1)-Cl(2)	3.3321(13)	O(1)-K(1)-Cl(1)	80.48(5)
K(1)-Cl(1)	3.5258(14)	Cl(2)-K(1)-Cl(1)	61.12(3)
K(1)-Cu(1)	3.7678(11)	C(1)-K(1)-Cl(1)	65.18(7)
K(1)-K(1)	3.8802(16)	Cl(2)-K(1)-Cl(1)	136.38(3)
K(1)-K(1)	4.7575(17)	Cl(2)-K(1)-Cl(1)	149.77(3)
O(2)-Cu(1)-N(1)	81.60(10)	O(1)-K(1)-Cu(1)	107.52(6)
O(2)-Cu(1)-Cl(1)	175.23(8)	O(2)-K(1)-Cu(1)	30.58(5)
N(1)-Cu(1)-Cl(1)	94.55(8)	O(2)-K(1)-Cu(1)	111.64(5)
O(2)-Cu(1)-Cl(2)	87.84(7)	O(1)-K(1)-Cu(1)	105.63(5)
N(1)-Cu(1)-Cl(2)	165.17(8)	Cl(2)-K(1)-Cu(1)	110.85(3)
Cl(1)-Cu(1)-Cl(2)	96.45(4)	C(1)-K(1)-Cu(1)	116.14(7)
O(2)-Cu(1)-K(1)	46.73(7)	Cl(2)-K(1)-Cu(1)	47.68(2)
N(1)-Cu(1)-K(1)	116.49(8)	Cl(2)-K(1)-Cu(1)	36.814(19)
Cl(1)-Cu(1)-K(1)	134.16(3)	Cl(1)-K(1)-Cu(1)	165.45(3)
Cl(2)-Cu(1)-K(1)	61.14(3)	O(1)-K(1)-K(1)	155.89(7)
O(1)-K(1)-O(2)	137.17(8)	O(2)-K(1)-K(1)	47.00(5)
O(1)-K(1)-O(2)	121.36(7)	O(2)-K(1)-K(1)	46.34(5)
O(2)-K(1)-O(2)	93.34(6)	O(1)-K(1)-K(1)	74.93(6)
O(1)-K(1)-O(1)	83.43(5)	Cl(2)-K(1)-K(1)	106.38(4)
O(2)-K(1)-O(1)	110.66(7)	C(1)-K(1)-K(1)	64.20(7)
O(2)-K(1)-O(1)	45.25(7)	Cl(2)-K(1)-K(1)	114.13(4)
O(1)-K(1)-Cl(2)	97.12(6)	Cl(2)-K(1)-K(1)	67.54(3)
O(2)-K(1)-Cl(2)	95.10(6)	Cl(1)-K(1)-K(1)	100.40(3)
O(2)-K(1)-Cl(2)	107.28(6)	Cu(1)-K(1)-K(1)	69.28(2)
O(1)-K(1)-Cl(2)	141.37(6)	O(1)-K(1)-K(1)	83.15(6)
O(1)-K(1)-C(1)	98.75(8)	O(2)-K(1)-K(1)	78.04(5)
O(2)-K(1)-C(1)	108.77(8)	O(2)-K(1)-K(1)	147.16(6)
O(2)-K(1)-C(1)	24.16(8)	O(1)-K(1)-K(1)	166.36(6)

O(1)-K(1)-C(1)	22.63(8)	Cl(2)-K(1)-K(1)	43.55(2)
Cl(2)-K(1)-C(1)	122.34(8)	C(1)-K(1)-K(1)	165.73(8)
O(1)-K(1)-Cl(2)	73.31(6)	Cl(2)-K(1)-K(1)	39.81(2)
O(2)-K(1)-Cl(2)	67.58(5)	Cl(2)-K(1)-K(1)	109.15(3)
O(2)-K(1)-Cl(2)	159.28(6)	Cl(1)-K(1)-K(1)	101.00(3)
O(1)-K(1)-Cl(2)	132.47(6)	Cu(1)-K(1)-K(1)	76.25(2)
Cl(2)-K(1)-Cl(2)	83.35(3)	K(1)-K(1)-K(1)	117.73(4)

Compound 4			
N(2)-Cu(2)	2.016(4)	O(1)-Cu(2)-N(2)	91.56(14)
Br(1)-Cu(2)	2.3798(8)	N(1)-Cu(2)-O(2)	88.71(15)
Cu(2)-N(1)	1.993(4)	O()1-Cu(2)-O(2)	98.60(16)
Cu(2)-O(1)	2.014(3)	N(2)-Cu(2)-O(2)	94.25(15)
Cu()2-N()2	2.016(4)	N(1)-Cu(2)-Br(1)	94.42(11)
Cu()2-O()2	2.203(4)	O(1)-Cu(2)-Br(1)	150.03(11)
N()1-Cu()2-O()1	81.04(14)	N(2)-Cu()2-Br(1)	91.08(11)
N()1-Cu()2-N()2	172.38(16)	O(2)-Cu(2)-Br(1)	110.96(12)

Compound 5			
Cu(1)-O(1)	1.939(3)	O(1)-Cu(1)-N(1)	96.38(12)
Cu(1)-O(1)	1.939(3)	O(1)-Cu(1)-N(1)	83.62(12)
Cu(1)-N(1)	1.979(3)	N(1)-Cu(1)-N(1)	180.00(17)
Cu(1)-N(1)	1.979(3)	O(1)-Cu(1)-O(3)	95.75(10)
Cu(1)-O(3)	2.650(3)	O(1)-Cu(1)-O(3)	84.25(10)
O(1)-Cu(1)-O(1)	180	N(1)-Cu(1)-O(3)	91.19(11)
O(1)-Cu(1)-N(1)	83.62(12)	N(1)-Cu(1)-O(3)	88.81(11)
O(1)-Cu(1)-N(1)	96.38(12)		

Cu(1)-O(3)	1.940(4)	O(3)-Cu(1)-N(1)	170.85(19)
Cu(1)-O(1)	1.947(4)	O(1)-Cu(1)-N(1)	170.85(20)
Cu(1-N(2)	1.985(4)	N(2)-Cu(1)-N(1)	170.85(21)
Cu(1)-N(1)	1.995(5)	O(3)-Cu(1)-O(5)	170.85(22)
Cu(1)-O(5)	2.354(4)	O(1)-Cu(1)-O(5)	170.85(23)
O(3)-Cu(1)-O(1)	170.85(16)	N(2)-Cu(1)-O(5)	170.85(24)
O(3)-Cu(1)-N(2)	170.85(17)	N(1)-Cu(1)-O(5)	170.85(25)
O(1)-Cu(1)-N(2)	170.85(18)		

L _{Cu1}			
Cu(1)-O(1)	1.934(2)	O(1)-Cu(1)-N(3)	96.08(11)
Cu(1)-O(3	1.943(2)	O(3)-Cu(1)-N(3)	83.08(11)
Cu(1)-N(1)	1.982(3)	N(1)-Cu(1)-N(3)	173.91(12)
Cu(1)-N(3)	1.996(3)	O(1)-Cu(1)-O(5)	94.12(10)
Cu(1)-O(5)	2.348(3)	O(3)-Cu(1)-O(5)	94.71(10)
O(1)-Cu(1)-O(3)	171.17(11)	N(1)-Cu(1)-O(5)	92.47(11)
O(1)-Cu(1)-N(1)	84.00(11)	N(3)-Cu(1)-O(5)	93.59(11)
O(3)-Cu(1)-N(1)	95.90(11)		

L _{Cu2}			
Cu(1)-O(3)	1.915(5)	O(3)-Cu(1)-N(1)	95.5(3)
Cu(1)-O(1)	1.972(5)	O(1)-Cu(1)-N(1)	84.1(3)
Cu(1)-N(3)	1.991(6)	N(3)-Cu(1)-N(1)	174.3(3)
Cu(1)-N(1)	1.997(7)	O(3)-Cu(1)-O(5)	93.8(2)
Cu(1)-O(5)	2.323(5)	O(1)-Cu(1)-O(5)	94.7(2)
O(3)-Cu(1)-O(1)	171.5(3)	N(3)-Cu(1)-O(5)	92.2(2)
O(3)-Cu(1)-N(3)	84.6(3)	N(1)-Cu(1)-O(5)	93.6(2)
O(1)-Cu(1)-N(3)	95.0(3)		

 L_{Cu3}

Cu(1)-O(1)1.934(2)O(1)-Cu(1)-N(3)96.10(10)Cu(1)-O(3)1.944(2)O(3)-Cu(1)-N(3)83.05(10)Cu(1)-N(1)1.981(3)N(1)-Cu(1)-N(3)173.92(11)Cu(1)-N(3)1.996(3)O(1)-Cu(1)-O(5)94.11(10)Cu(1)-O(5)2.348(3)O(3)-Cu(1)-O(5)94.72(10)O(1)-Cu(1)-O(3)171.16(11)N(1)-Cu(1)-O(5)92.47(10)
Cu(1)-O(3)1.944(2)O(3)-Cu(1)-N(3)83.05(10)Cu(1)-N(1)1.981(3)N(1)-Cu(1)-N(3)173.92(11)Cu(1)-N(3)1.996(3)O(1)-Cu(1)-O(5)94.11(10)Cu(1)-O(5)2.348(3)O(3)-Cu(1)-O(5)94.72(10)O(1)-Cu(1)-O(3)171.16(11)N(1)-Cu(1)-O(5)92.47(10)
Cu(1)-N(1)1.981(3)N(1)-Cu(1)-N(3)173.92(11)Cu(1)-N(3)1.996(3)O(1)-Cu(1)-O(5)94.11(10)Cu(1)-O(5)2.348(3)O(3)-Cu(1)-O(5)94.72(10)O(1)-Cu(1)-O(3)171.16(11)N(1)-Cu(1)-O(5)92.47(10)
Cu(1)-N(3)1.996(3)O(1)-Cu(1)-O(5)94.11(10)Cu(1)-O(5)2.348(3)O(3)-Cu(1)-O(5)94.72(10)O(1)-Cu(1)-O(3)171.16(11)N(1)-Cu(1)-O(5)92.47(10)
Cu(1)-O(5)2.348(3)O(3)-Cu(1)-O(5)94.72(10)O(1)-Cu(1)-O(3)171.16(11)N(1)-Cu(1)-O(5)92.47(10)
O(1)-Cu(1)-O(3) 171.16(11) N(1)-Cu(1)-O(5) 92.47(10)
O(1)-Cu(1)-N(1) 83.97(10) N(3)-Cu(1)-O(5) 93.59(10)
O(3)-Cu(1)-N(1) 95.94(10)

L _{Cu4}			
Cu(1)-O(3)	1.945(4)	O(3)-Cu(1)-N(3)	83.3(2)
Cu(1)-O(1)	1.955(4)	O(1)-Cu(1)-N(3)	95.3(2)
Cu(1)-N(1)	1.987(6)	N(1)-Cu(1)-N(3)	168.7(2)
Cu(1)-N(3)	1.994(6)	O(3)-Cu(1)-O(5)	97.6(2)
Cu(1)-O(5)	2.239(6)	O(1)-Cu(1)-O(5)	96.7(2)
O(3)-Cu(1)-O(1)	165.7(2)	N(1)-Cu(1)-O(5)	94.8(3)
O(3)-Cu(1)-N(1)	95.8(2)	N(3)-Cu(1)-O(5)	96.5(3)
O(1)-Cu(1)-N(1)	82.8(2)		

L _{Cu5}			
Cu(1)-O(3)	1.943(5)	O(3)-Cu(1)-N(3)	83.3(2)
Cu(1)-O(1)	1.953(5)	O(1)-Cu(1)-N(3)	95.4(2)
Cu(1)-N(1)	1.987(7)	N(1)-Cu(1)-N(3)	168.6(2)
Cu(1)-N(3)	1.994(7)	O(3)-Cu(1)-O(5)	97.7(2)
Cu(1)-O(5)	2.239(7)	O(1)-Cu(1)-O(5)	96.6(2)
O(3)-Cu(1)-O(1)	165.7(2)	N(1)-Cu(1)-O(5)	94.9(3)
O(3)-Cu(1)-N(1)	95.8(2)	N(3)-Cu(1)-O(5)	96.5(3)
O(1)-Cu(1)-N(1)	82.7(2)		

Compound	Configuration	Coordinated-group _{axial}	Cu-X _{axial}	Cu-X _{basal}	(O,N) _{basal} -Cu-X _{axial}
$\mathbf{L}_{\mathbf{Cu}}$	distorted square pyramid geometry	H ₂ O	d _{Cu-O} = 2.239 Å	d _{Cu-O} = 1.940 Å -1.947 Å d _{Cu-N} = 1.986 Å	97.676°, 99.432°
1	distorted octahedral geometry	mpca ⁻	$d_{Cu-O} = 2.514 \text{ Å}$	-1.995 Å d _{Cu-O} = 1.951 Å d _{Cu-N} = 1.978 Å	85.998°, 94.002°
2	distorted square pyramid geometry	CI	d _{Cu-Cl} = 2.695 Å	$d_{Cu-Cl} = 2.246 \text{ Å}$ $d_{Cu-O} = 1.938 \text{ Å}$ -1.972 Å $d_{L} = -1.987 \text{ Å}$	91.744°
3	distorted square pyramid geometry	CI	d _{Cu-Cl} = 2.888 Å	$d_{Cu-N} = 1.987 \text{ A}$ $d_{Cu-CI} = 2.246 \text{ Å}$ -2.280 Å $d_{Cu-O} = 1.965 \text{ Å}$ $d_{Cu-N} = 2.016 \text{ Å}$	90.414°
4	distorted square pyramid geometry	H ₂ O	$d_{Cu-O} = 2.207 \text{ Å}$	$d_{Cu-Br} = 2.380 \text{ Å}$ $d_{Cu-O} = 2.014 \text{ Å}$ $d_{Cu-N} = 1.994 \text{ Å}$ -2.016 Å	94.828°
5	distorted octahedral geometry	H ₂ O	$d_{Cu-O} = 2.650 \text{ Å}$	d _{Cu-O} = 1.940 Å d _{Cu-N} = 1.978 Å	94.634°, 85.366°

Table S3 Corresponding bond distances (Å) and angle (°) of the coordination environments of Cu(II) ions .

* X_{axial} : atoms at the axial sites; X_{basal} : atoms at the basal sites; (O,N) _{basal}: one O atom and one N atom from chelating ligand at the basal sites; Coordinated-group_{axial}: The coordinated group at the axial site.

Table S4 Microcalorimetric investigations on reversible dissolution/reorganization processes

Reversible dissolution/reorganization processes	$\Delta_r H^ heta_{m(Forward)}$ (kJ·mol ⁻¹)	$\Delta_{\rm r} H^{\theta}_{\rm m(Reverse)}$ (kJ·mol ⁻¹)
1 and L_{Cu}	-81.22	81.18
2 and L_{Cu}	-71.52	71.55
3 and L_{Cu}	-92.62	92.60
4 and L_{Cu}	-68.33	68.37
5 and $\mathbf{L}_{\mathbf{Cu}}$	-48.94	48.93

Fig. S1 a. PXRD patterns for the metal-containing ligand; b. PXRD patterns for 1.

Fig. S2 a. PXRD patterns for the metal-containing ligand; b. PXRD patterns for 2.

Fig. S3 a. PXRD pattern for the metal-containing ligand; b. PXRD pattern for 3;

Fig. S4 a. PXRD pattern for the metal-containing ligand; a. PXRD pattern for 4;

Fig. S5 a. PXRD pattern for the metal-containing ligand; b. PXRD pattern for 5.

Fig. S6 $\chi_M T$ vs T plot for 2. The solid line is the fit to the experimental data. The inset shows the reverse

susceptibility $1/\chi_M$ of the magnetism complex over temperature.

Fig. S7 TG curves of compounds 1-4.