Australian Journal of Chemistry 2014, 67(7), 1030-1036

SUPPLEMENTARY MATERIAL

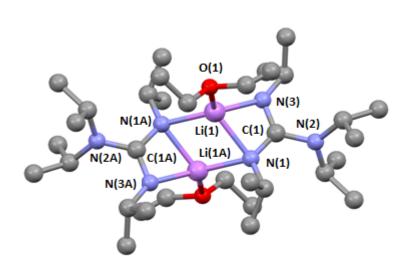
Formation of an Unusual *Bis*(diguanidinate) Ligand *via* Nucleophilic Attack of a Guanidinate onto a Carbodiimide

Rebecca L. Melen, $^{a,b}*$ Hayley R. Simmonds, a Hubert Wadepohl, b Paul T. Wood, a Lutz. H. Gade, b Dominic S. Wright a,*

- [a] Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW (U.K.); e-mail dsw1000@cam.ac.uk, rebecca.melen@cantab.net.
- [b] Institute of Inorganic Chemistry, University of Heidelberg, In Neuenheimer Feld 270 D-69120 Heidelberg, Germany.

General Experimental Details of NMR Spectroscopic Studies

NMR spectra were obtained in deuterated NMR solvents (d_6 -benzene, d_8 -toluene) which had been dried over a sodium mirror. A Bruker 500 MHz TCI Cryoprobe Spectrometer was used and all spectra were recorded at +25°C. The frequencies of the nuclei and external reference standards are as follows: $^1\text{H} - 500.20$ MHz, (Me₄Si, CDCl₃, 1%), ^{71}Ga NMR - 152.54 MHz, (Ga(H₂O)₆³⁺,D₂O), ^{13}C NMR - 125.79 MHz, (Me₄Si, CDCl₃, 1%).


1. Synthesis and analytical data for compound 1 [{iPr2NC(NiPr)2}Li·Et2O]

ⁿBuLi (2.334 ml, 3.75 mmol) was added dropwise to a solution of diisopropylamine (0.523 ml, 3.75 mmol) in ether (15 ml) at -78°C and the resulting solution was stirred for 30 minutes. N,N'-diisopropylcarbodiimide (0.6 ml, 3.75 mmol) in ether (10 ml) was then added dropwise at -78°C, the solution was warmed to room temperature and stirred overnight. The solvent volume was reduced *in vacuo* until a precipitate formed, which was heated back into solution. Storage of the resulting solution at -20°C for 24 hours afforded colourless blocks of [{\frac{i}{P}} Pr_2 NC(N^i Pr)_2 \}Li·Et_2 O] (314 mg, 0.51 mmol, 27%).

NMR:

 1 H NMR (500.1 MHz, δ /ppm, d₆-benzene, +25 $^{\circ}$ C): 3.73 (septet, 2H), 3.54 (septet, 2H), 3.48 (septet, 2H), 3.30 (q., ether), 3.07 (septet, 2H), 1.35 (d., 12H), 1.27 (d., 12H), 1.14 (t., ether), 1.04 (d., 12H), 0.95 (d., 12H).

¹³C NMR (125.8 MHz, δ /ppm, d₆-benzene, +25 °C): 128.2, 127.8, 65.9 (ether), 47.8, 47.2, 46.0, 45.5, 23.7, 22.8, 22.1, 21.6, 15.5 (ether).

Figure 1.1 Crystal structure of compound **1** [$\{^iPr_2NC(N^iPr)_2\}Li\cdot Et_2O\}$]. H-atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Li-N 2.017(3)-2.182(4), Li-O 1.986(3), N-C(ring) 1.347(2)-1.433(2), N-C(iPr) 1.463(2)-1.470(2), N(1)-Li-N(3) 65.4(1), N(1)-Li-N(1A) 108.2(1), Li-N-Li 71.8(1), N-C-N 117.1(1)-122.1(1), Li-N-C(ring) 90.6(1), Li-N-C(iPr) 148.7(1), C(ring)-N-C(iPr) 117.0(1)-120.7(1).

Crystal data:

 $C_{34}H_{76}Li_2N_6O_2$, M=614.89, monoclinic, space group P21/n, Z=2, $\alpha=9.8005(2)$, b=19.6311(5), c=10.9117(4) Å, $\alpha=90.00$, $\theta=103.947(2)$, $\gamma=90.00^\circ$, V=2037.5(1) Å³, $\mu(Mo-K\alpha)=0.061$ mm⁻¹, $\rho_{calc}=1.002$ Mg m⁻³, T=180(2) K. Total reflections 13390, unique 4585 ($R_{int}=0.085$). R1=0.056 [$I>2\sigma(I)$] and wR2=0.158 (all data). H-atoms were not located and were fixed geometrically.

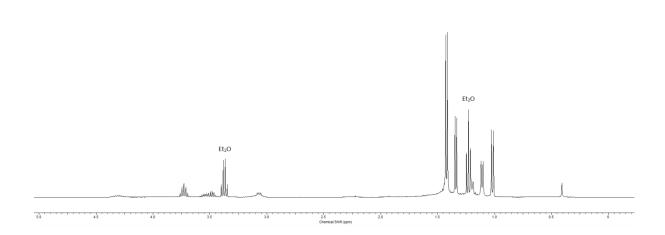
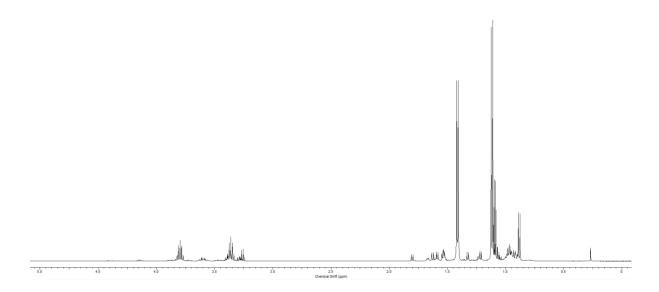
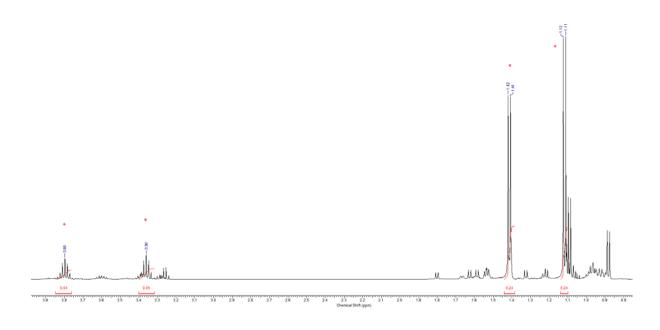
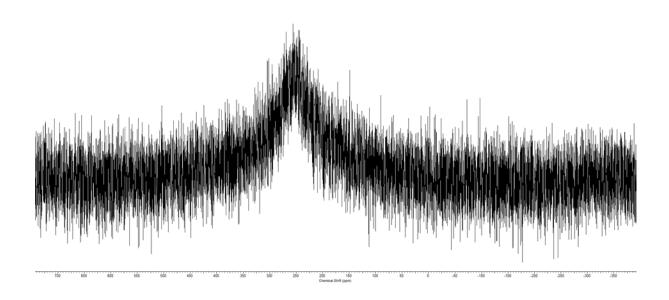
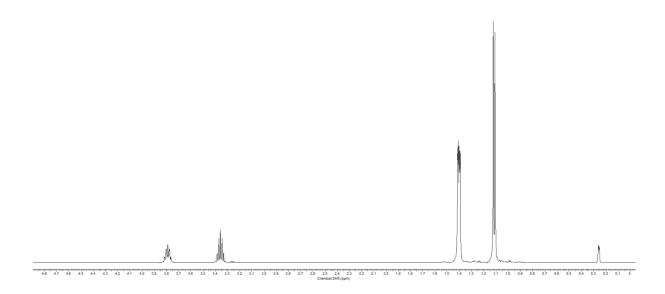




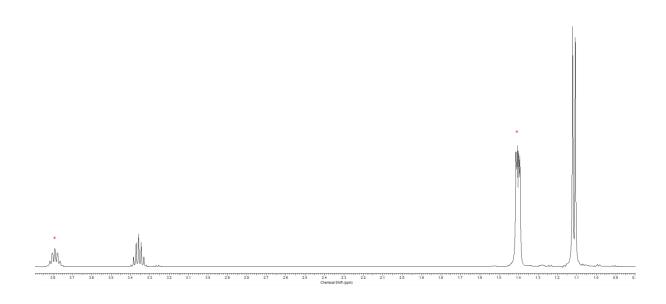
Figure 1.2 1 H NMR Spectrum of [i Pr $_2$ NC(N i Pr) $_2$ }Li·Et $_2$ O] (1) in d $_6$ -benzene.

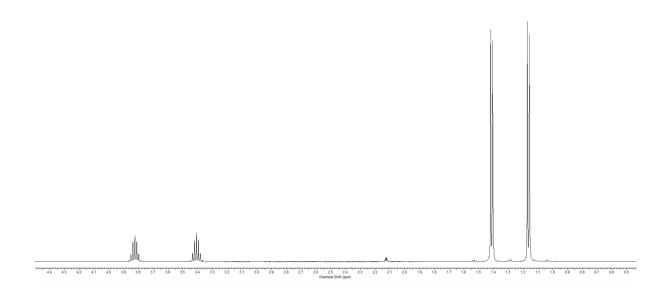
Note: the above proton NMR spectrum was taken on a 400.14 MHz spectrometer.

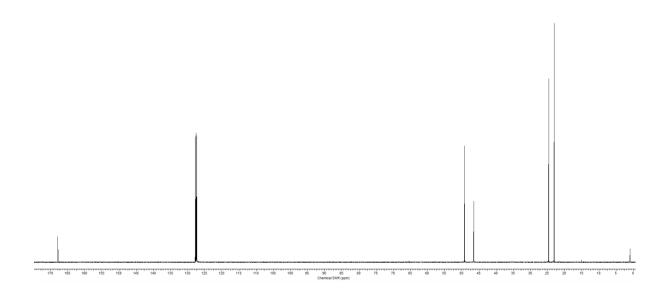

Figure 1.3 ¹H NMR Spectrum of $[\{{}^{i}Pr_{2}NC({}^{...}N^{i}Pr)_{2}\}GaCl_{2}]$ (**2**) in d₆-benzene. Peaks for both the carbodiimide ${}^{i}PrN=C=N^{i}Pr$ and the *bis*(diguanidinate) complex $[{}^{i}PrN\{C(N^{i}Pr)=N^{i}Pr\}\{C(=N^{i}Pr)N^{i}Pr_{2}\}GaCl_{2}]$ (**4**) can be seen along with the expected doublets and septets for **2**.

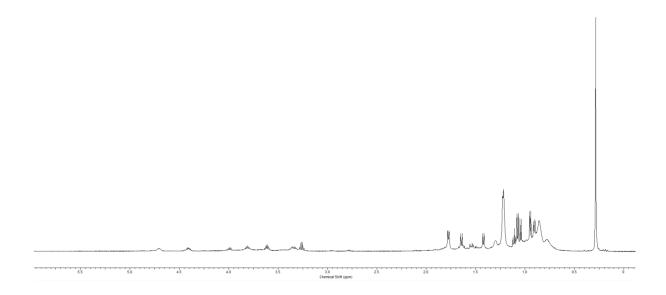

Figure 1.4 Zoomed-in ¹H NMR Spectrum of **2** showing integration of septets to doublets.

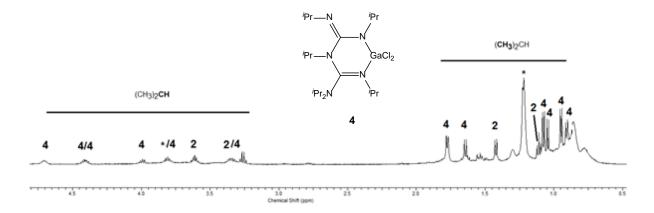
The major peaks corresponding to compound **2** are septets at δ = 3.80 and 3.36 ppm and doublets at δ = 1.42 and 1.12 ppm (indicated * on the above spectrum). The integration of these peaks shows a


ratio of 1 : 6, as expected (the septet at δ = 3.36 ppm is difficult to integrate as there is a minor overlapping septet at δ = 3.37 ppm corresponding to compound **4**).


Figure 1.5 71 Ga NMR Spectrum of [$\{^i$ Pr $_2$ NC(=N i Pr) $_2\}$ GaCl $_2$] (2) in d $_6$ -benzene.


Figure 1.6 ¹H NMR Spectrum of $[{^iPr_2NC(N^iPr)_2}_2GaCl]$ (3) in d₆-benzene.


Figure 1.7 Slightly zoomed-in version of the 1 H NMR Spectrum of $[\{^iPr_2NC(N^iPr)_2\}_2GaCl]$ (3) in d₆-benzene. It can be seen that the doublet at $\delta=1.41$ ppm is actually split into two doublets and the septet at $\delta=3.79$ ppm has broad peaks indicating that it may also actually be two septets (peaks in question are marked *). This is consistent with the solid-state structures of 3 which shows that the iPr_2N groups are approximately perpendicular to the CN_3 ligand plane and are therefore inequivalent.


Figure 1.8 ¹H NMR Spectrum of $[\{^iPr_2NC(N^iPr)_2\}_2GaCl]$ (3) in d₈-toluene at +40°C. It can be seen that at high temperature the septet at $\delta = 3.79$ ppm is much sharper and also that there is only one doublet at $\delta = 1.41$ ppm, rather than the two that appear at room temperature.

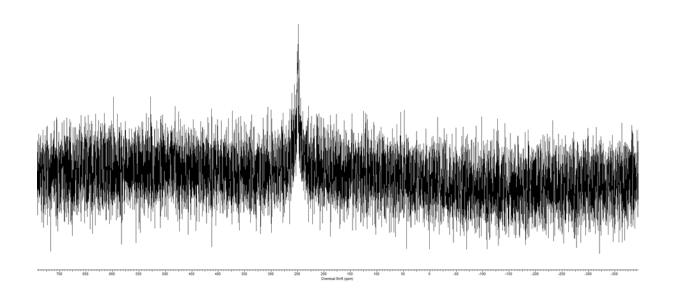

Figure 1.9 13 C NMR Spectrum of $[\{^{i}Pr_{2}NC(N^{i}Pr)_{2}\}_{2}GaCl]$ (3) in d₆-benzene.

Figure 1.10 ¹H NMR Spectrum of ['PrN{C(N'Pr)=N'Pr}{C(=N'Pr)N'Pr₂}GaCl₂] (**4**) in d₆-benzene. Present in the spectrum are peaks for both compounds **2** and **4**, as well as peaks for the carbodiimide, ${}^{i}PrN=C=N^{i}Pr$.

Figure 1.11 ¹H NMR Spectrum of [$^{\prime}$ PrN{C(N $^{\prime}$ Pr)=N $^{\prime}$ Pr}{C(=N $^{\prime}$ Pr)N $^{\prime}$ Pr₂}GaCl₂] (4) in d₆-benzene with the peaks labelled to indicate which compound each shift is due to. Peaks marked * are those for the carbodiimide.

Figure 1.12 ⁷¹Ga NMR Spectrum of [i PrN{C(N i Pr)=N i Pr}{C(=N i Pr)N i Pr $_2$ }GaCl $_2$] (4) in d $_6$ -benzene.