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S1. Thermogravimetric analysis
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Figure S1: Thermogravimetry curves of compounds A (red) and B (black).
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S2. Synchrotron-Based Powder X-ray Diffraction
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Figure S2: Comparison powder X-ray diffraction data of A (200 K, black) and the simulated
pattern generated from single crystal X-ray data (220 K, red).
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Figure S3: Comparison powder X-ray diffraction data of A in the HS (blue) and LS (red) states.
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Figure S4: Powder X-ray diffraction data of B in the HS (280 K, blue) and LS (220 K, red) states
highlighting the significant change in peak position and intensity.
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Figure S5: Powder X-ray diffraction unit cell versus temperature data for A from Le Bail
fitting.
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Figure S6: Variable temperature synchrotron powder X-ray diffraction data of B. (a) Single
peak evolution over the range 10.8-11.6 °, highlighting the abrupt shift in Bragg reflection (0
-1 2) with temperature. (b) Peak evolution over the range 6-10 °, highlighting the shift in
Bragg reflections in both directions.
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S3. Single crystal X-ray diffraction

Figure S7: Structural representation of the weak hydrogen-bonding interactions between
adjacent ligands in A (150 K, see Table 2).
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S4. Temperature Dependent Magnetic Susceptibility Measurements
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Figure S8: T versus temperature for SCO of B with different degrees of completeness of
the HS to LS transition. Assuming a value around 0 cm®.K.mol ™ for a complete LS transition,
the ratio of B : B-(4-PAP) have been calculated and is indicated on the curve.
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