Supplementary Material

Thermal Spin Crossover Behaviour of Two-dimensional Hofmanntype Coordination Polymers Incorporating Photoactive Ligands

Florence Ragon,^A Korcan Yaksi,^A Natasha F. Sciortino,^A Guillaume Chastanet,^B Jean-François Létard,^B Deanna M. D'Alessandro,^A Cameron J. Kepert^A and Suzanne M. Neville^{AC}

^ASchool of Chemistry, The University of Sydney, NSW 2006, Australia.

^BCNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France

^cCorresponding author: suzanne.neville@sydney.edu.au

Contents:

- S1. Thermogravimetric analysis
- S2. Powder X-ray diffraction
- S3. Single crystal X-ray diffraction
- **S4. Temperature Dependent Magnetic Susceptibility Measurements**

S1. Thermogravimetric analysis

Figure S1: Thermogravimetry curves of compounds A (red) and B (black).

S2. Synchrotron-Based Powder X-ray Diffraction

Figure S2: Comparison powder X-ray diffraction data of **A** (200 K, black) and the simulated pattern generated from single crystal X-ray data (220 K, red).

Figure S3: Comparison powder X-ray diffraction data of A in the HS (blue) and LS (red) states.

Figure S4: Powder X-ray diffraction data of **B** in the HS (280 K, blue) and LS (220 K, red) states highlighting the significant change in peak position and intensity.

Figure S5: Powder X-ray diffraction unit cell versus temperature data for **A** from Le Bail fitting.

Figure S6: Variable temperature synchrotron powder X-ray diffraction data of **B**. (a) Single peak evolution over the range 10.8-11.6 °, highlighting the abrupt shift in Bragg reflection (0 -1 2) with temperature. (b) Peak evolution over the range 6-10 °, highlighting the shift in Bragg reflections in both directions.

S3. Single crystal X-ray diffraction

Figure S7: Structural representation of the weak hydrogen-bonding interactions between adjacent ligands in **A** (150 K, see Table 2).

Figure S8: $\chi_M T$ versus temperature for SCO of **B** with different degrees of completeness of the HS to LS transition. Assuming a value around 0 cm³.K.mol⁻¹ for a complete LS transition, the ratio of **B** : **B**-(**4**-**PAP**) have been calculated and is indicated on the curve.