Supplementary Material

Design and synthesis of piperazine–based ionic liquids for liquid–liquid extraction of Cu(II), Ni(II) and Co(II) from water

Weiyuan Xu†, Wang Liang‡, Jianying Huang†, Gerui Ren*†, Dandan Xu†

†Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
‡Zhejiang Province Radiation Environmental Monitoring Center, Hangzhou 310012, P. R. China

Synthesis of piperazine functional groups...P 2

1H NMR, 13C NMR and HRMS spectra of compound 1.................................P 3–4

1H NMR, 13C NMR and HRMS spectra of compound 2.................................P 5–6

1H NMR, 13C NMR and HRMS spectra of compound 3a..............................P 7–8

1H NMR, 13C NMR and HRMS spectra of compound 3b..............................P 9–10
Synthesis of piperazine functional groups

Two N–heteroalkyl–N′–tosylpiperazines were synthesized according to protocols published in the literature (Huang JY, Xu WY, Xie HJ and Li SJ, One-Step Cyclization: Synthesis of N–Heteroalkyl–N′–tosylpiperazines. *J Org Chem* **77**: 7506–7511 (2012)). Subsequently, tosyl group was removed by sulfuric acid (98 v/v%, 10 mL) with stirring at 120 °C for 24 h under N₂ atmosphere. The mixture was cooled and adjusted pH to 10 with aq. NaOH. The resulting solution was extracted with CHCl₃ (10 mL ×3). The combined organic phases were concentrated under reduced pressure and the residue was dried under vacuum to give mono-substituted piperazines.

![Scheme S1](image)

Scheme S1. Synthetic route of mono-substituted piperazines. Reaction Conditions: (a, b) K₂CO₃, MeCN, reflux under N₂ atmosphere, 12 h; (c, d) H₂SO₄, N₂ atmosphere, 120°C, 24 h.
Compound 1

1H NMR

13C NMR
Compound 2

1H NMR

13C NMR
Compound 3a

1H NMR

13C NMR
Compound 3b

1H NMR

13C NMR