Graded IR-filters: Distinguishing between single and multipoint NO₂…I

halogen bonded supramolecular synthons (P, Q, R synthons)

Subhankar Saha, Somnath Ganguly and Gautam R. Desiraju*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

*Corresponding author. e-mail: desiraju@sscu.iisc.ernet.in

SUPPLEMENTARY MATERIAL

Table of Contents

S 1	1 Syntheses of compounds 9-14 .				
S2	32 Melting points of compounds 9-14				
S3	Full solid state IR spectra of Step 1 compounds	6			
S4	4 Full solid state IR spectra of Step 2 compounds				
S5	Full solid state IR spectra of Step 4 compounds	10			
S 6	Solid state IR spectra of Step 5 compounds in different regions	11			
S 7	Full solid state IR spectra of Step 5 compounds				
S 8	Solution IR spectra of Step 1 compounds	16			
S9	Solution IR spectra of Step 2 compounds	18			
S10	Solution IR spectra of Step 4 compounds	20			
S11	Solution IR spectra of Step 5 compounds	21			
S12	Crystallographic information table	24			
S13	ORTEP Diagrams	25			

S1: Synthesis of compounds 9-14.

Synthesis of compound 9:

First, 3-methyl-4-nitrobenzoic acid was refluxed at ~ 75°C with excess of SOCl₂ for ~ 3 h to get 3-methyl-4-nitrobenzoyl chloride. After this, the excess of SOCl₂ was removed under reduced pressure. Then equimolar amounts of the 3-methyl-4-nitrobenzoyl chloride and 4-iodoaniline (2 mmol of each component) were dissolved in chloroform (~ 50 cm³), and the resulting mixture was refluxed for 1 h at ~ 75°C. New product formation was followed by TLC. The mixture was then cooled and washed first with 5% Na₂HCO₃ solution, 2(N) HCl, three times with water, finally with brine, respectively and dried over Na₂SO₄. After cooling the mixture, the solvent was removed under reduced pressure, and the resulting product was purified by crystallization from THF, the melting point (205°C) was then checked. After IR analysis the product formation was confirmed by Single Crystal X-Ray Diffraction (SCXRD) study.

Synthesis of compound 10:

After the synthesis of 4-iodobenzoyl chloride from 4-iodobenzoic acid following above process for **9**, equimolar amounts (2 mmol of each) of 4-iodobenzoyl chloride and 3-nitrophenol in chloroform (~ 50 cm³) were refluxed for 1 h at ~ 75°C. New product formation was followed by TLC. The mixture was then cooled and washed first with 5% Na₂HCO₃ solution, then three times with water, finally with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude was crystallized from ethanol, the melting point (146°C) was then checked. After IR analysis the product formation was confirmed by SCXRD study.

Synthesis of compound 11:

Equimolar amounts (2 mmol of each) of 4-iodobenzoyl chloride and 3-fluoro-4-nitrophenol in chloroform (~ 50 cm³) were refluxed for 1 h at ~ 75°C. New product formation was followed by TLC. The mixture was then cooled and washed first with 5% Na₂HCO₃ solution, then three times with water, finally with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude was crystallized from THF, the melting point (147°C) was then checked. After IR analysis the product formation was confirmed by SCXRD study.

Synthesis of compound 12:

Equimolar amounts (2 mmol of each) of 4-iodobenzoyl chloride and 4-nitrophenol in chloroform (~ 50 cm³) were refluxed for 1 h at ~ 75°C. New product formation was followed by TLC. The mixture was then cooled and washed first with 5% Na₂HCO₃ solution, then three times with water, finally with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude was crystallized from CHCl₃, the melting point (168°C) was then checked. After IR analysis the product formation was confirmed by SCXRD study.

Synthesis of compound 13:

After the synthesis of 3-iodobenzoyl chloride from 3-iodobenzoic acid following above process for **9**, equimolar amounts (2 mmol of each) of 4-iodobenzoyl chloride and 3-nitrophenol in chloroform (~ 50 cm³) were refluxed for 1 h at ~ 75°C. New product formation was followed by TLC. The mixture was then cooled and washed first with 5% Na₂HCO₃ solution, then three times with water, finally with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude was crystallized from methanol, the melting point (121°C) was then checked. After IR analysis the product formation was confirmed by SCXRD study.

Synthesis of compound 14:

Equimolar amounts (2 mmol of each) of 3-iodobenzoyl chloride and 2-nitrophenol in chloroform (~ 50 cm³) were refluxed for 1 h at ~ 75°C. New product formation was followed by TLC. The mixture was then cooled and washed first with 5% Na₂HCO₃ solution, then three times with water, finally with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the resulting crude was crystallized from CHCl₃, the melting point (123°C) was then checked. After IR analysis the product formation was confirmed by SCXRD study.

S2: Melting points of compounds 9-14.

Compound	Melting point (°C)		
9	205		
10	146		
11	147		
12	168		
13	121		
14	123		

S3: Full solid state IR spectra of Step 1 compounds

Solid state IR spectrum of 1.

Solid state IR spectrum of **2**.

Solid state IR spectrum of **3**.

S4: Full solid state IR spectra of Step 2 compounds

Solid state IR spectrum of 4.

The absorption of the sulfonamide group appears at ~ 1345 cm⁻¹ (L. J. Bellamy, *Advances in Infrared Group Frequencies*, **1968**, Methuen) and is close to the symmetric stretch of the nitro group in compound **4**. However, the symmetric nitro stretch lies at a frequency that is lower than the sulfonamide absorption thereby allowing clear identification of a split symmetric stretch.

Solid state IR spectrum of 5.

Solid state IR spectrum of 6.

S5: Full solid state IR spectra of Step 4 compounds

Solid state IR spectrum of 7.

Solid state IR spectrum of 8.

S6: Solid state IR spectra of Step 5 compounds in different regions

Solid state IR spectra of compounds 10 and 13. Full spectra are given in supplementary S7.

Solid state IR spectra of compound 12. Complete spectra are given in supplementary S7.

Solid state IR spectra of compounds 9 and 11. Full spectra are given in supplementary S7.

Solid state IR spectra of compound 14. Complete spectra are given in supplementary S7.

S7: Full Solid state IR spectra of Step 5 compounds

Solid state IR spectrum of 9.

Solid state IR spectrum of 10.

Solid state IR spectrum of 11.

Solid state IR spectrum of 12.

Solid state IR spectrum of 13.

Solid state IR spectrum of 14.

S8: Solution IR spectra of Step 1 compounds

Solution IR spectrum of 2.

Solution IR spectrum of **3**.

S9: Solution IR spectra of Step 2 compounds

Solution IR spectrum of 4.

Solution IR spectrum of 5.

Solution IR spectrum of 6.

S10: Solution IR spectra of Step 4 compounds

Solution IR spectrum of 7.

S11: Solution IR spectra of Step 5 compounds

Solution IR spectrum of 9.

Solution IR spectrum of 10.

Solution IR spectrum of 11.

Solution IR spectrum of 12.

Solution IR spectrum of 13.

Solution IR spectrum of 14.

	9	10	11	12	13	14
Formula	C ₁₄ H ₁₁ IN ₂ O 3	C ₁₃ H ₈ INO ₄	C ₁₃ H ₇ FINO 4	C ₁₃ H ₈ INO ₄	C ₁₃ H ₈ INO ₄	C ₁₃ H ₈ INO ₄
Molecular weight	382.15	369.10	387.10	369.10	369.10	369.10
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1
a (Å)	16.732(12)	13.942(8)	9.175(5)	3.978(2)	14.269(6)	7.822(4)
b (Å)	5.122(3)	4.128(2)	9.354(5)	12.694(6)	12.159(5)	9.204(6)
c (Å)	16.293(12)	22.012(12)	15.009(8)	12.733(6)	7.271(3)	9.696(6)
α (°)	90	90	90	100.39(2)	90	89.12(3)
β (°)	102.440(10)	95.060(7)	98.793(7)	94.530(19)	95.714(6)	75.68(3)
γ (°)	90	90	90	97.448(15)	90	70.702(14)
Volume (Å ³)	1363.55	1261.91	1272.98	623.633	1255.23	636.675
Z/Z'	4/1	4/1	4/1	2/1	4/1	2/1
ρ_{calc} (g/cm ³)	1.862	1.943	2.020	1.966	1.953	1.925
F(000)	744.0	712.0	744.0	356.0	712.0	356.0
Temp. (K)	150	150	150	150	150	150
R ₁	0.0335	0.0333	0.0301	0.0315	0.0288	0.0291
wR ₂	0.1220	0.1357	0.1092	0.1207	0.1068	0.1021
Goodness-of fit	1.239	1.227	0.777	1.248	1.204	0.786
CCDC No.	1006583	1006584	1006585	1006586	1006587	1006588

S12: Crystallographic information table

