10.1071/CH14380_AC

©CSIRO 2015

Australian Journal of Chemistry 2015, 68 (5), 731-741

Supplementary Material

Synthesis and Structure of a Novel Substituted Benzothiazolyl-*N*-phenyl-2pyridinecarbothioamide; Kinetics of Formation and Electrochemistry of Two of its Palladium Pincer Complexes

Mark A.W. Lawrence,^{A,C} Yvette A. Jackson,^A Willem H. Mulder,^A Per Martin Björemark,^B and Mikael Håkansson^B

^ADepartment of Chemistry, University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies.

^BDepartment of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, Gothenburg, Sweden.

^CCorresponding author. Email: mark.lawrence02@uwimona.edu.jm (tel: 876-927-1910, fax: 876-977-1835)

Figure S1: ¹HNMR of bis-*N*-(2,5-dimethoxyphenyl)pyridine-2,6-dicarbothioamide (dicarbothioamide I)

Figure S2: ¹³CNMR of bis-*N*-(2,5-dimethoxyphenyl)pyridine-2,6-dicarbothioamide (dicarbothioamide I)

Figure S3: ¹HNMR of 6-(4,7-dimethoxy-2-benzothiazolyl)-*N*-(2,5-dimethoxyphenyl)-2-pyridinecarbothioamide (L¹).

Figure S4: ¹³CNMR of 6-(4,7-dimethoxy-2-benzothiazolyl)-*N*-(2,5-dimethoxyphenyl)-2-pyridinecarbothioamide (L¹)

Figure S5: Mole ratio plot of $Pd(OAc)_2$: L¹ at 340 nm.

Figure S6: Mole ratio plot of PdCl₂(CH₃CN)₂:L¹ at 340 nm.

Figure S7: A plot of ln *K* against 1/T for the formation of PdClL¹ (\blacklozenge) and Pd(OAc)L¹ (\Box) in acetonitrile.

Figure S8: Plots of k_{obs} against [L¹]; [Pd(OAc)₂] = 3.9 µmol dm⁻³ (\blacklozenge : 298 K; \Box : 303 K; \blacktriangle : 308 K; × : 313 K)

	х	у	Z	U(eq)
C(1)	7793(2)	5632(1)	1993(1)	13(1)
C(2)	6651(2)	6148(1)	1459(1)	16(1)
C(3)	7005(2)	6413(1)	796(1)	19(1)
C(4)	8495(2)	6170(1)	693(1)	17(1)
C(5)	9569(2)	5644(1)	1249(1)	14(1)
C(6)	7486(2)	5323(1)	2726(1)	14(1)
C(7)	8867(2)	4338(1)	3837(1)	13(1)
C(8)	10503(2)	4224(1)	4285(1)	14(1)
C(9)	10831(2)	3827(1)	4997(1)	16(1)
C(10)	9551(2)	3544(1)	5276(1)	17(1)
C(11)	7946(2)	3649(1)	4826(1)	15(1)
C(12)	7598(2)	4036(1)	4101(1)	15(1)
C(13)	11182(2)	5324(1)	1155(1)	14(1)
C(14)	13200(2)	4085(1)	1737(1)	14(1)
C(15)	13392(2)	3407(1)	2308(1)	14(1)
C(16)	14729(2)	2840(1)	2476(1)	17(1)
C(17)	15906(2)	2920(1)	2083(1)	16(1)
C(18)	15700(2)	3568(1)	1516(1)	15(1)
C(19)	14349(2)	4152(1)	1338(1)	14(1)
C(20)	13324(2)	4404(1)	4372(1)	21(1)
C(21)	6880(2)	3116(1)	5818(1)	25(1)
C(22)	12132(2)	2613(1)	3131(1)	22(1)
C(23)	18219(2)	3171(1)	1288(1)	20(1)
N(1)	9221(2)	5373(1)	1886(1)	13(1)
N(2)	8652(2)	4754(1)	3119(1)	14(1)
N(3)	11799(2)	4627(1)	1627(1)	14(1)
O(1)	11645(2)	4549(1)	3957(1)	17(1)
O(2)	6593(2)	3396(1)	5042(1)	20(1)
O(3)	12154(2)	3376(1)	2651(1)	19(1)
O(4)	16754(2)	3700(1)	1084(1)	19(1)
S(1)	5886(1)	5695(1)	2984(1)	17(1)
S(2)	11985(1)	5809(1)	530(1)	18(1)

Table S1: Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Dicarbothioamide 1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
C(1)	8052(2)	4315(1)	6298(1)	12(1)
C(2)	8069(2)	5140(1)	5966(1)	15(1)
C(3)	7138(2)	5533(1)	5638(1)	16(1)
C(4)	6226(2)	5087(1)	5655(1)	15(1)
C(5)	6280(2)	4275(1)	6010(1)	13(1)
C(6)	9030(2)	3851(1)	6664(1)	13(1)
C(7)	9457(2)	2402(1)	7331(1)	13(1)
C(8)	10521(2)	2371(1)	7471(1)	15(1)
C(9)	11068(2)	1673(1)	7864(1)	15(1)
C(10)	10545(2)	1009(2)	8107(1)	18(1)
C(11)	9471(2)	1033(2)	7963(1)	19(1)
C(12)	8921(2)	1719(1)	7579(1)	15(1)
C(13)	12717(2)	1067(2)	8396(1)	22(1)
C(14)	7289(2)	1129(2)	7635(1)	24(1)
C(15)	5336(2)	3808(1)	6068(1)	13(1)
C(16)	4093(2)	2754(1)	6314(1)	14(1)
C(17)	3460(2)	2090(1)	6497(1)	17(1)
C(18)	2414(2)	2272(2)	6340(1)	19(1)
C(19)	1998(2)	3100(2)	6012(1)	18(1)
C(20)	2616(2)	3760(2)	5834(1)	16(1)
C(21)	3689(2)	3580(1)	5987(1)	14(1)
C(22)	1199(2)	4736(2)	5322(1)	22(1)
C(23)	3326(2)	645(2)	7010(1)	27(1)
C(24)	7181(2)	2113(1)	5310(1)	13(1)
C(25)	7222(2)	2945(1)	4986(1)	14(1)
C(26)	6309(2)	3325(1)	4636(1)	16(1)
C(27)	5384(2)	2872(1)	4624(1)	16(1)
C(28)	5408(2)	2078(1)	4987(1)	13(1)
C(29)	8147(2)	1636(1)	5680(1)	13(1)
C(30)	8533(2)	201(1)	6360(1)	15(1)
C(31)	9598(2)	179(1)	6532(1)	16(1)
C(32)	10113(2)	-546(2)	6916(1)	17(1)

Table S2: Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) For L¹. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(33)	9564(2)	-1235(2)	7125(1)	20(1)
C(34)	8492(2)	-1211(2)	6952(1)	22(1)
C(36)	11731(2)	-1215(2)	7449(1)	23(1)
C(37)	6305(2)	-1141(2)	6550(1)	30(1)
C(38)	4446(2)	1645(1)	5041(1)	14(1)
C(39)	3153(2)	676(2)	5298(1)	17(1)
C(40)	2486(2)	49(2)	5484(1)	20(1)
C(41)	1454(2)	271(2)	5317(1)	24(1)
C(42)	1074(2)	1077(2)	4960(1)	24(1)
C(43)	1717(2)	1680(2)	4762(1)	20(1)
C(44)	2784(2)	1475(2)	4937(1)	17(1)
C(45)	2292(2)	-1376(2)	6011(1)	31(1)
C(46)	329(2)	2602(2)	4173(1)	31(1)
C(35)	7967(2)	-505(2)	6575(1)	18(1)
N(1)	7170(1)	3889(1)	6324(1)	12(1)
N(2)	8824(1)	3065(1)	6944(1)	13(1)
N(3)	4417(1)	4173(1)	5848(1)	14(1)
N(4)	6289(1)	1693(1)	5320(1)	13(1)
N(5)	7921(1)	884(1)	5978(1)	15(1)
N(6)	3540(1)	2018(1)	4793(1)	16(1)
O(1)	12120(1)	1720(1)	7972(1)	20(1)
O(2)	7869(1)	1810(1)	7405(1)	20(1)
O(3)	3965(1)	1330(1)	6823(1)	23(1)
O(4)	2288(1)	4599(1)	5524(1)	18(1)
O(5)	11172(1)	-499(1)	7053(1)	21(1)
O(6)	6914(1)	-410(1)	6377(1)	24(1)
O(7)	2957(1)	-719(1)	5822(1)	24(1)
O(8)	1413(1)	2480(1)	4414(1)	25(1)
S(1)	10170(1)	4331(1)	6695(1)	20(1)
S(2)	5418(1)	2723(1)	6455(1)	14(1)
S(3)	9306(1)	2043(1)	5679(1)	16(1)
S(4)	4477(1)	615(1)	5470(1)	16(1)

C(1)-N(1)	1.349(2)
C(1)-C(2)	1.390(2)
C(1)-C(6)	1.513(2)
C(2)-C(3)	1.392(3)
C(3)-C(4)	1.390(3)
C(4)-C(5)	1.392(3)
C(5)-N(1)	1.348(2)
C(5)-C(13)	1.516(2)
C(6)-N(2)	1.341(2)
C(6)-S(1)	1.6664(17)
C(7)-C(12)	1.385(2)
C(7)-C(8)	1.411(2)
C(7)-N(2)	1.414(2)
C(8)-O(1)	1.374(2)
C(8)-C(9)	1.382(2)
C(9)-C(10)	1.402(2)
C(10)-C(11)	1.389(3)
C(11)-O(2)	1.380(2)
C(11)-C(12)	1.397(2)
C(13)-N(3)	1.348(2)
C(13)-S(2)	1.6593(17)
C(14)-C(19)	1.390(2)
C(14)-N(3)	1.406(2)
C(14)-C(15)	1.423(2)
C(15)-C(16)	1.377(3)
C(15)-O(3)	1.381(2)
C(16)-C(17)	1.403(2)
C(17)-C(18)	1.386(2)
C(18)-O(4)	1.376(2)
C(18)-C(19)	1.402(2)
C(20)-O(1)	1.433(2)
C(21)-O(2)	1.432(2)
C(22)-O(3)	1.433(2)
C(23)-O(4)	1.431(2)

Table S3: Bond lengths $[{\mbox{\sc A}}]$ and angles $[^\circ]$ for Dicarbothioamide 1.

N(1)-C(1)-C(2)	122.25(16)
N(1)-C(1)-C(6)	116.29(15)
C(2)-C(1)-C(6)	121.45(15)
C(1)-C(2)-C(3)	118.76(16)
C(4)-C(3)-C(2)	119.23(17)
C(3)-C(4)-C(5)	118.69(16)
N(1)-C(5)-C(4)	122.32(16)
N(1)-C(5)-C(13)	116.40(15)
C(4)-C(5)-C(13)	121.26(15)
N(2)-C(6)-C(1)	111.78(14)
N(2)-C(6)-S(1)	126.70(13)
C(1)-C(6)-S(1)	121.50(13)
C(12)-C(7)-C(8)	120.31(15)
C(12)-C(7)-N(2)	124.20(16)
C(8)-C(7)-N(2)	115.49(15)
O(1)-C(8)-C(9)	125.85(15)
O(1)-C(8)-C(7)	114.58(15)
C(9)-C(8)-C(7)	119.56(15)
C(8)-C(9)-C(10)	120.38(16)
C(11)-C(10)-C(9)	119.55(16)
O(2)-C(11)-C(10)	124.58(15)
O(2)-C(11)-C(12)	114.78(15)
C(10)-C(11)-C(12)	120.64(16)
C(7)-C(12)-C(11)	119.52(16)
N(3)-C(13)-C(5)	111.31(14)
N(3)-C(13)-S(2)	127.48(14)
C(5)-C(13)-S(2)	121.22(13)
C(19)-C(14)-N(3)	126.11(15)
C(19)-C(14)-C(15)	119.31(15)
N(3)-C(14)-C(15)	114.57(15)
C(16)-C(15)-O(3)	125.22(15)
C(16)-C(15)-C(14)	120.06(15)
O(3)-C(15)-C(14)	114.71(15)
C(15)-C(16)-C(17)	120.56(16)
C(18)-C(17)-C(16)	119.35(16)

O(4)-C(18)-C(17)	124.62(15)
O(4)-C(18)-C(19)	114.47(15)
C(17)-C(18)-C(19)	120.92(15)
C(14)-C(19)-C(18)	119.77(15)
C(5)-N(1)-C(1)	118.71(15)
C(6)-N(2)-C(7)	130.24(15)
C(13)-N(3)-C(14)	133.07(15)
C(8)-O(1)-C(20)	116.56(14)
C(11)-O(2)-C(21)	116.54(14)
C(15)-O(3)-C(22)	117.01(14)
C(18)-O(4)-C(23)	116.37(13)

C(1)-N(1)	1.348(2)
C(1)-C(2)	1.392(3)
C(1)-C(6)	1.510(3)
C(2)-C(3)	1.394(3)
C(3)-C(4)	1.389(3)
C(4)-C(5)	1.395(3)
C(5)-N(1)	1.339(3)
C(5)-C(15)	1.472(3)
C(6)-N(2)	1.343(2)
C(6)-S(1)	1.660(2)
C(7)-C(8)	1.385(3)
C(7)-N(2)	1.410(2)
C(7)-C(12)	1.418(3)
C(8)-C(9)	1.405(3)
C(9)-O(1)	1.375(2)
C(9)-C(10)	1.383(3)
C(10)-C(11)	1.397(3)
C(11)-C(12)	1.383(3)
C(12)-O(2)	1.373(2)
C(13)-O(1)	1.429(2)
C(14)-O(2)	1.430(2)
C(15)-N(3)	1.307(3)
C(15)-S(2)	1.747(2)
C(16)-C(21)	1.402(3)
C(16)-C(17)	1.405(3)
C(16)-S(2)	1.730(2)
C(17)-O(3)	1.368(3)
C(17)-C(18)	1.382(3)
C(18)-C(19)	1.408(3)
C(19)-C(20)	1.383(3)
C(20)-O(4)	1.377(2)
C(20)-C(21)	1.416(3)
C(21)-N(3)	1.391(3)
C(22)-O(4)	1.428(2)

Table S4: Bond lengths [Å] and angles [°] for $\boldsymbol{L^1}\!.$

C(23)-O(3)	1.436(3)
C(24)-N(4)	1.345(2)
C(24)-C(25)	1.394(3)
C(24)-C(29)	1.509(3)
C(25)-C(26)	1.388(3)
C(26)-C(27)	1.390(3)
C(27)-C(28)	1.395(3)
C(28)-N(4)	1.345(3)
C(28)-C(38)	1.471(3)
C(29)-N(5)	1.343(2)
C(29)-S(3)	1.666(2)
C(30)-C(31)	1.384(3)
C(30)-N(5)	1.410(3)
C(30)-C(35)	1.422(3)
C(31)-C(32)	1.405(3)
C(32)-O(5)	1.378(3)
C(32)-C(33)	1.385(3)
C(33)-C(34)	1.392(3)
C(34)-C(35)	1.383(3)
C(36)-O(5)	1.431(2)
C(37)-O(6)	1.434(2)
C(38)-N(6)	1.308(3)
C(38)-S(4)	1.747(2)
C(39)-C(44)	1.403(3)
C(39)-C(40)	1.410(3)
C(39)-S(4)	1.723(2)
C(40)-C(41)	1.374(3)
C(40)-O(7)	1.376(3)
C(41)-C(42)	1.409(3)
C(42)-C(43)	1.381(3)
C(43)-O(8)	1.375(3)
C(43)-C(44)	1.415(3)
C(44)-N(6)	1.387(3)
C(45)-O(7)	1.437(2)
C(46)-O(8)	1.428(3)
C(35)-O(6)	1.376(3)

N(1)-C(1)-C(2)	122.61(18)
N(1)-C(1)-C(6)	115.56(16)
C(2)-C(1)-C(6)	121.82(17)
C(1)-C(2)-C(3)	118.94(18)
C(4)-C(3)-C(2)	118.72(18)
C(3)-C(4)-C(5)	118.55(18)
N(1)-C(5)-C(4)	123.21(18)
N(1)-C(5)-C(15)	116.03(17)
C(4)-C(5)-C(15)	120.74(18)
N(2)-C(6)-C(1)	111.21(17)
N(2)-C(6)-S(1)	128.18(15)
C(1)-C(6)-S(1)	120.60(14)
C(8)-C(7)-N(2)	125.27(17)
C(8)-C(7)-C(12)	119.87(17)
N(2)-C(7)-C(12)	114.86(18)
C(7)-C(8)-C(9)	119.93(18)
O(1)-C(9)-C(10)	125.30(18)
O(1)-C(9)-C(8)	114.50(17)
C(10)-C(9)-C(8)	120.21(19)
C(9)-C(10)-C(11)	119.96(18)
C(12)-C(11)-C(10)	120.60(19)
O(2)-C(12)-C(11)	125.63(18)
O(2)-C(12)-C(7)	114.92(17)
C(11)-C(12)-C(7)	119.45(19)
N(3)-C(15)-C(5)	123.10(18)
N(3)-C(15)-S(2)	117.05(15)
C(5)-C(15)-S(2)	119.85(15)
C(21)-C(16)-C(17)	121.82(19)
C(21)-C(16)-S(2)	110.36(15)
C(17)-C(16)-S(2)	127.80(16)
O(3)-C(17)-C(18)	127.08(18)
O(3)-C(17)-C(16)	115.18(18)
C(18)-C(17)-C(16)	117.74(19)
C(17)-C(18)-C(19)	121.07(19)
C(20)-C(19)-C(18)	121.55(19)

O(4)-C(20)-C(19)	125.90(19)
O(4)-C(20)-C(21)	115.97(17)
C(19)-C(20)-C(21)	118.12(19)
N(3)-C(21)-C(16)	114.87(18)
N(3)-C(21)-C(20)	125.42(18)
C(16)-C(21)-C(20)	119.70(18)
N(4)-C(24)-C(25)	122.63(18)
N(4)-C(24)-C(29)	115.77(17)
C(25)-C(24)-C(29)	121.59(17)
C(26)-C(25)-C(24)	118.77(18)
C(25)-C(26)-C(27)	119.13(18)
C(26)-C(27)-C(28)	118.34(19)
N(4)-C(28)-C(27)	122.91(18)
N(4)-C(28)-C(38)	116.47(17)
C(27)-C(28)-C(38)	120.57(18)
N(5)-C(29)-C(24)	111.23(17)
N(5)-C(29)-S(3)	127.93(16)
C(24)-C(29)-S(3)	120.84(14)
C(31)-C(30)-N(5)	125.49(18)
C(31)-C(30)-C(35)	119.93(18)
N(5)-C(30)-C(35)	114.58(18)
C(30)-C(31)-C(32)	119.62(18)
O(5)-C(32)-C(33)	124.95(18)
O(5)-C(32)-C(31)	114.46(17)
C(33)-C(32)-C(31)	120.6(2)
C(32)-C(33)-C(34)	119.70(19)
C(35)-C(34)-C(33)	120.85(19)
N(6)-C(38)-C(28)	122.71(18)
N(6)-C(38)-S(4)	116.80(15)
C(28)-C(38)-S(4)	120.45(15)
C(44)-C(39)-C(40)	121.9(2)
C(44)-C(39)-S(4)	110.56(15)
C(40)-C(39)-S(4)	127.58(18)
C(41)-C(40)-O(7)	127.27(19)
C(41)-C(40)-C(39)	117.5(2)
O(7)-C(40)-C(39)	115.22(19)

C(40)-C(41)-C(42)	121.22(19)
C(43)-C(42)-C(41)	121.8(2)
O(8)-C(43)-C(42)	125.6(2)
O(8)-C(43)-C(44)	116.50(18)
C(42)-C(43)-C(44)	117.9(2)
N(6)-C(44)-C(39)	114.72(19)
N(6)-C(44)-C(43)	125.56(19)
C(39)-C(44)-C(43)	119.70(19)
O(6)-C(35)-C(34)	125.85(19)
O(6)-C(35)-C(30)	114.84(18)
C(34)-C(35)-C(30)	119.3(2)
C(5)-N(1)-C(1)	117.95(16)
C(6)-N(2)-C(7)	132.79(18)
C(15)-N(3)-C(21)	109.55(17)
C(28)-N(4)-C(24)	118.03(17)
C(29)-N(5)-C(30)	133.08(19)
C(38)-N(6)-C(44)	109.71(17)
C(9)-O(1)-C(13)	116.89(16)
C(12)-O(2)-C(14)	117.24(16)
C(17)-O(3)-C(23)	115.69(18)
C(20)-O(4)-C(22)	116.14(16)
C(32)-O(5)-C(36)	116.56(16)
C(35)-O(6)-C(37)	117.18(17)
C(40)-O(7)-C(45)	116.34(19)
C(43)-O(8)-C(46)	116.12(18)
C(16)-S(2)-C(15)	88.17(9)
C(39)-S(4)-C(38)	88.21(10)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
C(1)	14(1)	10(1)	15(1)	-2(1)	3(1)	-1(1)
C(2)	16(1)	13(1)	21(1)	-1(1)	5(1)	2(1)
C(3)	20(1)	15(1)	19(1)	4(1)	1(1)	4(1)
C(4)	22(1)	15(1)	15(1)	2(1)	6(1)	1(1)
C(5)	18(1)	11(1)	13(1)	-1(1)	4(1)	-1(1)
C(6)	13(1)	12(1)	15(1)	-1(1)	2(1)	-2(1)
C(7)	15(1)	12(1)	12(1)	-1(1)	2(1)	2(1)
C(8)	12(1)	14(1)	17(1)	-2(1)	5(1)	1(1)
C(9)	13(1)	17(1)	16(1)	-1(1)	2(1)	2(1)
C(10)	19(1)	15(1)	15(1)	2(1)	3(1)	3(1)
C(11)	15(1)	13(1)	19(1)	2(1)	7(1)	1(1)
C(12)	11(1)	15(1)	17(1)	-1(1)	2(1)	1(1)
C(13)	17(1)	11(1)	13(1)	-2(1)	2(1)	-1(1)
C(14)	15(1)	10(1)	14(1)	-1(1)	3(1)	0(1)
C(15)	17(1)	14(1)	13(1)	-1(1)	6(1)	-2(1)
C(16)	22(1)	14(1)	14(1)	2(1)	4(1)	0(1)
C(17)	15(1)	14(1)	19(1)	0(1)	3(1)	3(1)
C(18)	15(1)	15(1)	15(1)	-3(1)	6(1)	-2(1)
C(19)	16(1)	11(1)	14(1)	1(1)	4(1)	0(1)
C(20)	10(1)	30(1)	23(1)	-3(1)	3(1)	1(1)
C(21)	24(1)	28(1)	24(1)	12(1)	11(1)	3(1)
C(22)	28(1)	17(1)	24(1)	4(1)	13(1)	-3(1)
C(23)	17(1)	20(1)	25(1)	3(1)	9(1)	4(1)
N(1)	14(1)	11(1)	14(1)	-1(1)	4(1)	-1(1)
N(2)	11(1)	18(1)	14(1)	2(1)	4(1)	1(1)
N(3)	15(1)	14(1)	16(1)	2(1)	7(1)	1(1)
O(1)	9(1)	24(1)	19(1)	1(1)	4(1)	1(1)
O(2)	15(1)	26(1)	22(1)	9(1)	7(1)	0(1)
O(3)	22(1)	18(1)	21(1)	6(1)	12(1)	2(1)
O(4)	16(1)	20(1)	23(1)	5(1)	10(1)	5(1)
S(1)	15(1)	19(1)	18(1)	1(1)	6(1)	5(1)
S(2)	20(1)	17(1)	17(1)	4(1)	8(1)	1(1)

Table S5: Anisotropic displacement parameters (Å²x 10³)for Dicarbothioamide 1. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	11(1)	15(1)	11(1)	-2(1)	5(1)	0(1)
C(2)	14(1)	16(1)	16(1)	-1(1)	5(1)	-3(1)
C(3)	19(1)	16(1)	14(1)	2(1)	5(1)	0(1)
C(4)	13(1)	17(1)	14(1)	-1(1)	2(1)	1(1)
C(5)	14(1)	14(1)	10(1)	-3(1)	4(1)	-1(1)
C(6)	14(1)	14(1)	11(1)	-2(1)	5(1)	-1(1)
C(7)	16(1)	13(1)	11(1)	1(1)	4(1)	1(1)
C(8)	16(1)	15(1)	14(1)	2(1)	6(1)	-2(1)
C(9)	15(1)	16(1)	14(1)	-2(1)	4(1)	1(1)
C(10)	22(1)	16(1)	15(1)	2(1)	5(1)	4(1)
C(11)	25(1)	17(1)	18(1)	4(1)	11(1)	0(1)
C(12)	14(1)	16(1)	15(1)	-1(1)	6(1)	-1(1)
C(13)	18(1)	23(1)	20(1)	4(1)	0(1)	7(1)
C(14)	19(1)	25(1)	33(1)	8(1)	13(1)	-5(1)
C(15)	12(1)	16(1)	12(1)	-3(1)	4(1)	-1(1)
C(16)	13(1)	18(1)	13(1)	-4(1)	5(1)	-2(1)
C(17)	21(1)	17(1)	15(1)	-3(1)	9(1)	-3(1)
C(18)	20(1)	23(1)	18(1)	-7(1)	10(1)	-9(1)
C(19)	12(1)	24(1)	19(1)	-7(1)	5(1)	-4(1)
C(20)	13(1)	20(1)	14(1)	-5(1)	4(1)	-2(1)
C(21)	14(1)	17(1)	12(1)	-5(1)	5(1)	-3(1)
C(22)	12(1)	32(1)	23(1)	0(1)	2(1)	1(1)
C(23)	37(1)	23(1)	24(1)	4(1)	15(1)	-10(1)
C(24)	13(1)	13(1)	13(1)	-4(1)	6(1)	-3(1)
C(25)	16(1)	15(1)	15(1)	-1(1)	7(1)	-4(1)
C(26)	19(1)	13(1)	19(1)	2(1)	10(1)	0(1)
C(27)	16(1)	16(1)	17(1)	0(1)	7(1)	1(1)
C(28)	13(1)	13(1)	16(1)	-5(1)	7(1)	-1(1)
C(29)	16(1)	12(1)	12(1)	-4(1)	6(1)	-3(1)
C(30)	21(1)	14(1)	11(1)	1(1)	6(1)	-2(1)
C(31)	20(1)	16(1)	14(1)	1(1)	8(1)	-1(1)
C(32)	19(1)	18(1)	15(1)	-2(1)	7(1)	2(1)

Table S6: Anisotropic displacement parameters (Å²x 10³)for L¹. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

C(33)	27(1)	18(1)	16(1)	5(1)	7(1)	1(1)
C(34)	30(1)	20(1)	19(1)	4(1)	10(1)	-7(1)
C(36)	26(1)	23(1)	21(1)	6(1)	6(1)	8(1)
C(37)	25(1)	36(1)	27(1)	10(1)	5(1)	-18(1)
C(38)	16(1)	13(1)	16(1)	-4(1)	9(1)	-2(1)
C(39)	18(1)	17(1)	21(1)	-8(1)	12(1)	-7(1)
C(40)	24(1)	17(1)	23(1)	-8(1)	15(1)	-9(1)
C(41)	22(1)	27(1)	30(1)	-14(1)	18(1)	-16(1)
C(42)	15(1)	29(1)	31(1)	-14(1)	12(1)	-10(1)
C(43)	16(1)	21(1)	24(1)	-10(1)	8(1)	-5(1)
C(44)	15(1)	19(1)	19(1)	-8(1)	8(1)	-7(1)
C(45)	45(2)	23(1)	36(1)	-7(1)	29(1)	-18(1)
C(46)	12(1)	34(1)	43(1)	-10(1)	2(1)	-3(1)
C(35)	20(1)	19(1)	16(1)	1(1)	6(1)	-6(1)
N(1)	11(1)	13(1)	11(1)	-1(1)	3(1)	0(1)
N(2)	10(1)	16(1)	14(1)	1(1)	3(1)	-1(1)
N(3)	11(1)	17(1)	14(1)	-3(1)	4(1)	-2(1)
N(4)	14(1)	13(1)	14(1)	-2(1)	8(1)	-2(1)
N(5)	13(1)	17(1)	16(1)	2(1)	5(1)	-3(1)
N(6)	13(1)	16(1)	19(1)	-4(1)	7(1)	-4(1)
O(1)	14(1)	22(1)	21(1)	6(1)	1(1)	3(1)
O(2)	15(1)	21(1)	24(1)	7(1)	9(1)	-2(1)
O(3)	25(1)	21(1)	26(1)	6(1)	12(1)	-3(1)
O(4)	10(1)	23(1)	22(1)	2(1)	3(1)	2(1)
O(5)	19(1)	24(1)	21(1)	10(1)	8(1)	7(1)
O(6)	19(1)	27(1)	26(1)	9(1)	5(1)	-10(1)
O(7)	32(1)	19(1)	29(1)	-3(1)	20(1)	-11(1)
O(8)	12(1)	28(1)	34(1)	-2(1)	4(1)	-2(1)
S(1)	12(1)	21(1)	25(1)	6(1)	3(1)	-2(1)
S(2)	13(1)	16(1)	14(1)	1(1)	5(1)	0(1)
S(3)	13(1)	19(1)	18(1)	2(1)	6(1)	-3(1)
S(4)	17(1)	13(1)	20(1)	-1(1)	11(1)	-3(1)

<i>.</i> .				10 ³	k _{obs}			
10 ⁵ [L ¹] / -	29	8 K	30.	3 K	30	8 K	31	3 K
111	Cl	OAc	Cl	OAc	Cl	OAc	Cl	OAc
4.45	1.14	1.58	1.46	1.86	1.73	2.23	1.98	2.81
6.65	1.22	1.79	1.67	2.33	1.99	2.82	2.30	3.24
8.88	1.45	2.20	1.94	2.66	2.24	3.26	2.67	4.01
11.1	1.53	2.39	2.14	2.95	2.59	3.72	2.96	4.37
12.9	1.77	2.56	2.32	3.25	2.83	3.98	3.30	4.87
14.8	1.89	2.78	2.50	3.61	3.00	4.46	3.55	5.41

Table S7: Pseudo-first-order rate constants for the formation of PdClL¹ and Pd(OAc)L¹ from PdX₂, where X = Cl or OAc, and L¹ in acetonitrile, $[PdCl_2(CH_3CN)_2] = 3.7 \mu mol dm^{-3}$, $[Pd(OAc)_2] = 3.9 \mu mol dm^{-3}$.

NB: Cl and OAc represents the species formed from $PdCl_2(CH_3CN)_2$ and $Pd(OAc)_2$ (i.e. the formation of $PdClL^1$ and $Pd(OAc)L^1$) respectively.

Table S8: Standard enthalpy and entropy values deduced from the kinetic data for the formation of $PdCIL^{1}$ and $Pd(OAc)L^{1}$ in acetonitrile.

		ln (k	$k_1/(k_2[I]))$	1	n <i>K</i>
T/K	$10^4 \text{ T}^{-1}/\text{K}^{-1}$	$PdClL^1$	$Pd(OAc)L^1$	$PdClL^1$	$Pd(OAc)L^1$
298	33.56	9.19	9.30	9.92	10.0
303	33.00	9.21	9.52	9.97	10.2
308	32.47	9.31	9.62	10.0	10.3
313	31.95	9.38	9.62	10.1	10.4
	Δ_{f} H /kJ mol ⁻¹	10 ± 2	8 ± 4	8 ± 1	17 ± 4
	$\Delta_{f}S^{0}/J \text{ K}^{-1} \text{ mol}^{-1}$	110 ± 6	107 ± 14	108 ± 10	140 ± 20

	Х	У	Z	U(eq)
Pd(1)	4916(1)	773(1)	1959(1)	37(1)
S(2)	3109(2)	283(1)	-2354(1)	45(1)
S (1)	6309(2)	1242(1)	3064(1)	49(1)
Cl(1)	4109(2)	608(1)	4223(1)	63(1)
O(3)	2899(5)	-105(1)	2773(4)	59(1)
O(4)	845(5)	-371(1)	-2885(4)	56(1)
N(3)	3765(5)	381(1)	382(4)	36(1)
O(2)	6213(6)	2227(1)	2901(5)	71(1)
N(1)	5650(5)	998(1)	108(4)	37(1)
N(2)	8152(6)	1729(1)	1575(5)	48(1)
O(1)	11910(6)	1975(2)	5456(6)	87(2)
C(12)	7594(7)	2169(2)	3597(7)	55(1)
C(5)	5063(6)	851(1)	-1141(5)	39(1)
C(15)	4033(6)	519(1)	-934(5)	39(1)
C(20)	1242(6)	-333(2)	-1450(6)	44(1)
C(21)	2286(6)	-29(2)	-1125(5)	40(1)
C(19)	723(6)	-549(2)	-309(6)	49(1)
C(8)	10016(7)	1836(2)	3520(6)	53(1)
C(1)	6632(6)	1305(1)	95(5)	39(1)
C(16)	2787(6)	57(1)	296(5)	37(1)
C(11)	8072(9)	2353(2)	4879(8)	71(2)
C(9)	10503(8)	2025(2)	4795(7)	63(2)
C(7)	8583(7)	1905(2)	2933(6)	49(1)
C(4)	5443(6)	1010(2)	-2471(6)	46(1)
C(23)	2197(9)	-274(2)	4017(6)	66(2)
C(3)	6457(7)	1322(2)	-2500(6)	49(1)
C(18)	1243(6)	-475(2)	1115(6)	48(1)
C(2)	7057(6)	1472(2)	-1207(6)	46(1)
C(10)	9503(9)	2279(2)	5466(8)	73(2)
C(6)	7148(6)	1455(1)	1541(6)	40(1)
C(22)	-177(8)	-688(2)	-3250(7)	66(2)
C(13)	12850(10)	1675(3)	4929(11)	107(3)

Table S9. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for PdClL¹. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(17)	2271(6)	-179(2)	1443(6)	41(1)
C(14)	5195(10)	2498(3)	3499(12)	105(3)
Cl(2)	3012(3)	1810(1)	489(4)	143(1)
Cl(3)	1268(4)	1345(1)	-1593(4)	145(1)
C(24)	1477(11)	1804(3)	-772(13)	119(4)

Table S10. Bond lengths [Å] and angles [°] for PdClL¹.

Pd(1)-N(1)	1.994(4)
Pd(1)-N(3)	2.198(4)
Pd(1)-S(1)	2.2387(14)
Pd(1)-Cl(1)	2.2917(14)
S(2)-C(15)	1.721(5)
S(2)-C(21)	1.723(5)
S(1)-C(6)	1.759(5)
O(3)-C(17)	1.355(6)
O(3)-C(23)	1.435(7)
O(4)-C(20)	1.367(6)
O(4)-C(22)	1.435(7)
N(3)-C(15)	1.328(6)
N(3)-C(16)	1.395(6)
O(2)-C(12)	1.373(8)
O(2)-C(14)	1.404(8)
N(1)-C(5)	1.347(6)
N(1)-C(1)	1.353(6)
N(2)-C(6)	1.281(6)
N(2)-C(7)	1.431(7)
O(1)-C(9)	1.376(8)
O(1)-C(13)	1.407(9)
C(12)-C(11)	1.393(9)
C(12)-C(7)	1.399(8)
C(5)-C(4)	1.388(7)
C(5)-C(15)	1.461(7)
C(20)-C(19)	1.371(7)
C(20)-C(21)	1.409(7)

C(21)-C(16)	1.403(7)
C(19)-C(18)	1.403(8)
C(8)-C(7)	1.378(8)
C(8)-C(9)	1.397(8)
C(1)-C(2)	1.386(7)
C(1)-C(6)	1.488(7)
C(16)-C(17)	1.411(7)
C(11)-C(10)	1.379(10)
C(9)-C(10)	1.388(9)
C(4)-C(3)	1.385(7)
C(3)-C(2)	1.388(7)
C(18)-C(17)	1.379(7)
Cl(2)-C(24)	1.759(11)
Cl(3)-C(24)	1.740(11)
N(1)-Pd(1)-N(3)	79.55(15)
N(1)-Pd(1)-S(1)	86.08(12)
N(3)-Pd(1)-S(1)	165.63(11)
N(1)-Pd(1)-Cl(1)	171.36(12)
N(3)-Pd(1)-Cl(1)	107.92(11)
S(1)-Pd(1)-Cl(1)	86.40(5)
C(15)-S(2)-C(21)	89.0(2)
C(6)-S(1)-Pd(1)	99.47(17)
C(17)-O(3)-C(23)	118.5(5)
C(20)-O(4)-C(22)	116.1(5)
C(15)-N(3)-C(16)	110.4(4)
C(15)-N(3)-Pd(1)	107.6(3)
C(16)-N(3)-Pd(1)	141.8(3)
C(12)-O(2)-C(14)	118.3(6)
C(5)-N(1)-C(1)	120.6(4)
C(5)-N(1)-Pd(1)	117.7(3)
C(1)-N(1)-Pd(1)	121.6(3)
C(6)-N(2)-C(7)	119.4(5)
C(9)-O(1)-C(13)	117.7(6)
O(2)-C(12)-C(11)	125.2(6)
O(2)-C(12)-C(7)	116.1(5)

C(11)-C(12)-C(7)	118.7(6)
N(1)-C(5)-C(4)	121.1(5)
N(1)-C(5)-C(15)	113.5(4)
C(4)-C(5)-C(15)	125.3(4)
N(3)-C(15)-C(5)	121.1(4)
N(3)-C(15)-S(2)	116.1(4)
C(5)-C(15)-S(2)	122.8(4)
O(4)-C(20)-C(19)	127.7(5)
O(4)-C(20)-C(21)	115.1(5)
C(19)-C(20)-C(21)	117.1(5)
C(16)-C(21)-C(20)	122.6(5)
C(16)-C(21)-S(2)	111.1(4)
C(20)-C(21)-S(2)	126.3(4)
C(20)-C(19)-C(18)	121.0(5)
C(7)-C(8)-C(9)	120.7(6)
N(1)-C(1)-C(2)	120.4(5)
N(1)-C(1)-C(6)	115.8(4)
C(2)-C(1)-C(6)	123.7(5)
N(3)-C(16)-C(21)	113.3(4)
N(3)-C(16)-C(17)	127.8(4)
C(21)-C(16)-C(17)	118.9(5)
C(10)-C(11)-C(12)	120.3(6)
O(1)-C(9)-C(10)	116.8(6)
O(1)-C(9)-C(8)	124.7(6)
C(10)-C(9)-C(8)	118.5(6)
C(8)-C(7)-C(12)	120.6(5)
C(8)-C(7)-N(2)	119.5(5)
C(12)-C(7)-N(2)	119.8(6)
C(3)-C(4)-C(5)	118.9(5)
C(4)-C(3)-C(2)	119.5(5)
C(17)-C(18)-C(19)	122.2(5)
C(1)-C(2)-C(3)	119.4(5)
C(11)-C(10)-C(9)	121.2(6)
N(2)-C(6)-C(1)	117.6(5)
N(2)-C(6)-S(1)	125.6(4)
C(1)-C(6)-S(1)	116.8(4)

O(3)-C(17)-C(18)	125.6(5)
O(3)-C(17)-C(16)	116.3(4)
C(18)-C(17)-C(16)	118.0(5)
Cl(3)-C(24)-Cl(2)	111.7(5)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pd(1)	44(1)	42(1)	26(1)	-2(1)	1(1)	-3(1)
S(2)	55(1)	50(1)	30(1)	-1(1)	-1(1)	-9(1)
S(1)	61(1)	56(1)	31(1)	-7(1)	2(1)	-16(1)
Cl(1)	79(1)	84(1)	26(1)	-1(1)	3(1)	-31(1)
O(3)	81(3)	63(3)	31(2)	3(2)	2(2)	-17(2)
O(4)	65(3)	58(2)	45(2)	-2(2)	-9(2)	-18(2)
N(3)	41(2)	37(2)	32(2)	-3(2)	-2(2)	1(2)
O(2)	72(3)	62(3)	79(3)	-17(2)	4(3)	10(2)
N(1)	40(2)	36(2)	34(2)	-4(2)	2(2)	-3(2)
N(2)	61(3)	46(2)	38(2)	-7(2)	5(2)	-9(2)
O(1)	89(4)	87(4)	84(4)	-25(3)	-29(3)	4(3)
C(12)	64(4)	41(3)	59(4)	-9(3)	10(3)	-7(3)
C(5)	47(3)	42(3)	29(2)	-3(2)	1(2)	1(2)
C(15)	48(3)	38(3)	32(2)	-3(2)	2(2)	0(2)
C(20)	46(3)	44(3)	43(3)	-4(2)	0(2)	0(2)
C(21)	40(3)	42(3)	38(3)	-1(2)	3(2)	-1(2)
C(19)	47(3)	42(3)	57(3)	3(2)	5(3)	-5(2)
C(8)	63(4)	47(3)	49(3)	-9(2)	3(3)	-4(3)
C(1)	47(3)	38(3)	31(2)	-3(2)	3(2)	1(2)
C(16)	38(3)	36(2)	37(3)	-4(2)	3(2)	3(2)
C(11)	92(5)	52(4)	70(5)	-22(3)	12(4)	-3(4)
C(9)	78(5)	52(3)	59(4)	-11(3)	-9(3)	-2(3)
C(7)	69(4)	37(3)	40(3)	-7(2)	6(3)	-14(3)
C(4)	56(3)	52(3)	30(2)	-1(2)	-1(2)	-8(3)
C(23)	95(5)	66(4)	37(3)	7(3)	12(3)	-10(4)
C(3)	63(4)	51(3)	32(3)	6(2)	9(2)	-4(3)
C(18)	53(3)	46(3)	46(3)	4(2)	8(3)	0(3)
C(2)	53(3)	44(3)	40(3)	2(2)	7(2)	-3(2)
C(10)	97(6)	62(4)	59(4)	-26(3)	-7(4)	-6(4)
C(6)	46(3)	36(3)	39(3)	-5(2)	2(2)	-2(2)
C(22)	66(4)	68(4)	62(4)	-11(3)	-12(3)	-23(3)
C(13)	84(6)	114(7)	122(8)	-26(6)	-33(6)	24(5)

Table S11. Anisotropic displacement parameters (Å²x 10³) for PdClL¹. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

C(17)	43(3)	41(3)	38(3)	2(2)	9(2)	2(2)
C(14)	74(5)	93(6)	148(9)	-46(6)	12(6)	6(5)
Cl(2)	96(2)	196(3)	138(3)	24(2)	19(2)	13(2)
Cl(3)	131(2)	98(2)	207(4)	3(2)	56(2)	-22(2)
C(24)	84(6)	97(7)	176(11)	29(7)	15(7)	13(5)