SUPPLEMENTARY MATERIAL

Manganese(II) Oxazolidine Nitroxide Chelates;

Structure, Magnetism and Redox Properties

Ian A. Gass, ^{A,B} Mousa Asadi, ^A David W. Lupton, ^A Boujemaa Moubaraki, ^A Alan M. Bond, ^A

Si-Xuan Guo, ^A and Keith S. Murray.^{A,C}*

^ASchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia ^BPresent address: School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK ^CCorresponding author. Email keith.murray@monash.edu

Figure S1. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S2. Contour plot of J_1 vs J_2 in cm⁻¹ for complex 1 with lowest residual in blue with a fixed value of g = 2.00. Residual value capped at 3.9.

Figure S3. Contour plot of J_1 vs J_2 in cm⁻¹ for complex 1 with lowest residual in blue with a fixed value of g = 2.00. Residual value capped at 7.8.

Figure S4. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S5. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.01. Residual value capped at 3.9.

Figure S6. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.01. Residual value capped at 7.8.

Figure S7. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S8. Contour plot of J_1 vs J_2 in cm⁻¹ for complex 1 with lowest residual in blue with a fixed value of g = 2.02. Residual value capped at 3.9.

Figure S9. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.02. Residual value capped at 7.8.

Figure S10. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S11. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.03. Residual value capped at 3.9.

Figure S12. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.03. Residual value capped at 7.8.

Figure S13. Plot of $\chi_M T$ vs T for **1** and best fit (red lines) with values shown inset.

Figure S14. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.04. Residual value capped at 3.9.

Figure S15. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.04. Residual value capped at 7.8.

Figure S16. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S17. Contour plot of J_1 vs J_2 in cm⁻¹ for complex 1 with lowest residual in blue with a fixed value of g = 2.05. Residual value capped at 3.9.

Figure S18. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.05. Residual value capped at 7.8.

Figure S19. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S20. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.06. Residual value capped at 3.9.

Figure S21. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.06. Residual value capped at 7.8.

Figure S22. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S23. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g

Figure S24. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.07. Residual value capped at 7.8.

Figure S25. Plot of $\chi_M T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S26. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.08. Residual value capped at 3.9.

Figure S27. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.08. Residual value capped at 7.8.

Figure S29. Contour plot of J_1 vs J_2 in cm⁻¹ for complex 1 with lowest residual in blue with a fixed value of g = 2.09.

Residual value capped at 3.9.

Figure S30. Contour plot of J_1 vs J_2 in cm⁻¹ for complex **1** with lowest residual in blue with a fixed value of g = 2.09. Residual value capped at 7.8.

Figure S31. Plot of $M(N\beta)$ vs field (0 - 50000 G) for 1 at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.00 and S = 3/2. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S32. Plot of $M(N\beta)$ vs field (0 - 50000 G) for 1 at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.02 and S = 3/2. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S33. Plot of $M(N\beta)$ vs field (0 - 50000 G) for 1 at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.04 and S = 3/2. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S34. Plot of $M(N\beta)$ vs field (0 - 50000 G) for 1 at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.06 and S = 3/2. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S35. Plot of $M(N\beta)$ vs field (0 - 50000 G) for 1 at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.08 and S = 3/2. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S36. Plot of $M(N\beta)$ vs field (0 - 50000 G) for 1 at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.10 and S = 3/2. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Table S1 Summary of known mononuclear complexes containing a linear $(L^{\bullet}) - Mn^{II} - (L^{\bullet})$ arrangement and their magnetic data where $L^{\bullet} =$ derivatives of Tempo, Proxyl and Iminoyl / Nitronyl nitroxides.

Formula	Plateaux $\chi_{\rm M}T$ value $({\rm cm}^3 {\rm mol}^{-1} {\rm K})^{\rm a}$	$J_1 (\mathrm{cm}^{-1})^{\mathrm{b}}$	$J_2 (\mathrm{cm}^{-1})^{\mathrm{b}}$	g	References
Mn ^{II} (hfac) ₂ (tempo) ₂	1.79	-79	None	1.95	1,2
Mn ^{II} (hfac) ₂ (proxyl) ₂	1.91	-105	None	2.02	1,2
Mn ^{II} (hfac) ₂ NITPh	1.90	-90	None	2.06	3
Mn ^{II} Cl ₂ (NIT2-py) ₂	1.84	-79.0	None	1.998	4
$Mn^{II}(4ImNNH)_2(NO_3)_2$	1.80	-97.3	None	1.96	5
Mn ^{II} (4ImNNH) ₂ (Cl) ₂	1.90	-121.6	None	2.01	5
$Mn^{II}(4ImNNH)_2(Br)_2$	1.80	-108.4	None	1.95	5
$Mn^{II}(hfac)_2(L_1^{\bullet})_2$	2.01	-92.4	None	2.00	6
$Mn^{II}(hfac)_2(L_2^{\bullet})_2$	2.01	-102.2	None	2.00	6
$\mathrm{Mn}^{\mathrm{II}}(\mathrm{hfac})_2(\mathrm{L}_3^{\bullet})_2$	N/A ^c	-311	11.1	2.0 (L ₃ •) 2.14 (Mn(II))	7

Abbreviations: hfac, hexafluoroacetylacetonate; tempo, 2,2,6,6-tetramethylpiperidinyl- 1-oxy; proxyl, 2,2,5,5-tetramethylpyrrolidinyl-1; NITPh, 2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy 3-oxide; NIT2-py, 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy 3-oxide; 4ImNNH, (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3 oxide; L₁•, See Ref 6 (azobenzene tempo derivative); L₂• See Ref 6 (azobenzene derivative); L₃•, 1-Iodo-3,5-bis(4',4',5',5'-tetramethyl-4',5'-dihydro-1H-imidazole-1'-oxyl)benzene. ^a The values have been converted to $\chi_M T$ units (cm³ mol⁻¹ K) and scaled to fit the appropriate spin Hamiltonian : $\hat{H} = -2J_1(\hat{S}_1\hat{S}_2 + \hat{S}_2\hat{S}_3) - 2J_2(\hat{S}_1\hat{S}_3)$ for a clearer comparison.

^b These values corresponding to fits obtained using the spin Hamiltonian form as above.

^c The (L[•]) – Mn^{II} - (L[•]) moiety has an additional two non-interacting iminoylnitroxide radicals and one non interacting Mn(II) ion. The plateaux value in this case is 7.9 cm³ mol⁻¹ K but has been omitted from the table as it was not a direct comparison.

- [1] C. Benelli, D. Gatteschi, C. Zanchini, R. J. Doedens, M. H. Dickman, L. C. Porter, *Inorg. Chem.* **1986**, *25*, 3453. doi: 10.1021/ic00239a027
- [2] M. H. Dickman, L. C. Porter, R. J. Doedens, *Inorg. Chem.*, **1986**, *25*, 2595. doi: 10.1021/ic00235a022
- [3] A. Caneschi, D. Gatteschi, J. Laugier, L. Pardi, P. Rey, C. Zanchini, *Inorg. Chem.*, **1988**, *27*, 2027. **doi:** 10.1021/ic00285a007
- [4] D. Luneau, G. Risoan, P. Rey, A. Grand, A. Caneschi, D. Gatteschi, J. Laugier, *Inorg. Chem.*, 1993, 32, 5616. doi: 10.1021/ic00076a032
- [5] C. Aoki, T. Ishida, T. Nogami, *Inorg. Chem.*, **2003**, *42*, 7616. **doi:** 10.1021/ic0349048
- [6] M. Fujino, S. Hasegawa, H. Akutsu, J. Yamada, S. Nakatsuji, *Polyhedron*, 2007, 26, 1989. doi:10.1016/j.poly.2006.09.050
- [7] M. G. V. Vaz, H. Akpinar, G. P. Guedes, S. Santos-Jr, M. A. Novak, P. M. Lahti, New. J. Chem., 2013, 37, 1927. doi: 10.1039/c3nj00047h