SUPPLEMENTARY MATERIAL

Manganese(II) Oxazolidine Nitroxide Chelates;

Structure, Magnetism and Redox Properties

Ian A. Gass, ${ }^{\mathrm{A}, \mathrm{B}}$ Mousa Asadi, ${ }^{\mathrm{A}}$ David W. Lupton, ${ }^{\mathrm{A}}$ Boujemaa Moubaraki, ${ }^{\mathrm{A}}$ Alan M. Bond, ${ }^{\mathrm{A}}$ Si-Xuan Guo, ${ }^{\mathrm{A}}$ and Keith S. Murray. ${ }^{\mathrm{A}, \mathrm{C}_{*}}$

${ }^{\text {A }}$ School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
${ }^{B}$ Present address: School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
${ }^{\text {C}}$ Corresponding author. Email keith.murray@monash.edu

Figure S1. Plot of $\chi_{\mathrm{M}} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S2. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.00$. Residual value capped at 3.9.

Figure S3. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.00$. Residual value capped at 7.8.

Figure S4. Plot of $\chi_{\mathrm{M}} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S5. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.01$. Residual value capped at 3.9.

Figure S6. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.01$. Residual value capped at 7.8.

Figure S7. Plot of $\chi_{\mathrm{M}} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S8. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.02$. Residual value capped at 3.9.

Figure S9. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.02$. Residual value capped at 7.8.

Figure S10. Plot of $\chi_{M} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S11. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.03$. Residual value capped at 3.9.

Figure S12. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.03$. Residual value capped at 7.8.

Figure S13. Plot of $\chi_{\mathrm{M}} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S14. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.04$. Residual value capped at 3.9.

Figure S15. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.04$. Residual value capped at 7.8.

Figure S16. Plot of $\chi_{M} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S17. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.05$. Residual value capped at 3.9.

Figure S18. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.05$. Residual value capped at 7.8.

Figure S19. Plot of $\chi_{\mathrm{M}} T$ vs T for 1 and best fit (red lines) with values shown inset.

Figure S20. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.06$. Residual value capped at 3.9.

Figure S21. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.06$. Residual value capped at 7.8.

Figure S22. Plot of $\chi_{\mathrm{M}} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S23. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed
 value of g 2.07. Residual value capped at

J_{2}

Figure S24. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $g=2.07$. Residual value capped at 7.8.

Figure S25. Plot of $\chi_{\mathrm{M}} T$ vs T for $\mathbf{1}$ and best fit (red lines) with values shown inset.

Figure S26. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.08$. Residual value capped at 3.9.

Figure S27. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.08$. Residual value capped at 7.8.

Figure

Plot of vs T for best fit lines) values shown

Figure S29. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=$ 2.09.

Residual value capped at 3.9.

Figure S30. Contour plot of J_{1} vs J_{2} in cm^{-1} for complex 1 with lowest residual in blue with a fixed value of $\mathrm{g}=2.09$. Residual value capped at 7.8.

Figure S31. Plot of $M(N \beta)$ vs field ($0-50000 \mathrm{G}$) for $\mathbf{1}$ at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.00 and $S=3 / 2$. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S32. Plot of $M(N \beta)$ vs field $(0-50000 \mathrm{G})$ for $\mathbf{1}$ at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.02 and $S=3 / 2$. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S33. Plot of $M(N \beta)$ vs field $(0-50000 \mathrm{G})$ for $\mathbf{1}$ at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.04 and $S=3 / 2$. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S34. Plot of $M(N \beta)$ vs field ($0-50000 \mathrm{G}$) for $\mathbf{1}$ at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.06 and $S=3 / 2$. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S35. Plot of $M(N \beta)$ vs field $(0-50000 \mathrm{G})$ for $\mathbf{1}$ at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.08 and $S=3 / 2$. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Figure S36. Plot of $M(N \beta)$ vs field ($0-50000 \mathrm{G}$) for $\mathbf{1}$ at (top), 3, 4, 5.5, 10 and 20 K (bottom) with g fixed at 2.10 and $S=3 / 2$. The solid red lines represent fits of the experimental data with the parameters shown and in the text.

Table S1 Summary of known mononuclear complexes containing a linear (L°) - $\mathrm{Mn}^{\mathrm{II}}-\left(\mathrm{L}^{\circ}\right)$ arrangement and their magnetic data where $\mathrm{L}^{\bullet}=$ derivatives of Tempo, Proxyl and Iminoyl / Nitronyl nitroxides.

Formula	Plateaux $\chi_{\mathrm{M}} T$ value $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)^{\mathrm{a}}$	$J_{1}\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$	$J_{2}\left(\mathrm{~cm}^{-1}\right)^{\mathrm{b}}$	g	References
$\mathrm{Mn}^{\text {II }}(\mathrm{hfac})_{2}(\text { tempo })_{2}$	1.79	-79	None	1.95	1,2
$\mathrm{Mn}^{\text {II }}(\mathrm{hfac})_{2}\left(\right.$ proxyl) ${ }_{2}$	1.91	-105	None	2.02	1,2
$\mathrm{Mn}^{\text {II }}$ (hfac) $2^{\text {NITPh }}$	1.90	-90	None	2.06	3
$\mathrm{Mn}^{\text {II }} \mathrm{Cl}_{2}$ (NIT2-py) ${ }_{2}$	1.84	-79.0	None	1.998	4
$\mathrm{Mn}^{\text {III }}(4 \mathrm{ImNNH})_{2}\left(\mathrm{NO}_{3}\right)_{2}$	1.80	-97.3	None	1.96	5
$\mathrm{Mn}^{\text {II }}(4 \mathrm{ImNNH})_{2}(\mathrm{Cl})_{2}$	1.90	-121.6	None	2.01	5
$\mathrm{Mn}^{\text {II }}(4 \mathrm{ImNNH})_{2}(\mathrm{Br})_{2}$	1.80	-108.4	None	1.95	5
$\mathrm{Mn}^{\text {II }}(\mathrm{hfac})_{2}\left(\mathrm{~L}_{1}{ }^{\bullet}\right)_{2}$	2.01	-92.4	None	2.00	6
$\mathrm{Mn}^{\text {II }}(\mathrm{hfac})_{2}\left(\mathrm{~L}_{2}{ }^{\bullet}\right)_{2}$	2.01	-102.2	None	2.00	6
$\mathrm{Mn}^{\text {II }}(\mathrm{hfac})_{2}\left(\mathrm{~L}_{3} \bullet\right)_{2}$	N/A ${ }^{\text {c }}$	-311	11.1	$\begin{gathered} 2.0\left(\mathrm{~L}_{3}{ }^{\bullet}\right) \\ 2.14(\mathrm{Mn}(\mathrm{II})) \\ \hline \end{gathered}$	7

Abbreviations: hfac, hexafluoroacetylacetonate; tempo, 2,2,6,6-tetramethylpiperidinyl- 1-oxy; proxyl, 2,2,5,5-tetramethylpyrrolidinyl-l; NITPh, 2-phenyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-l-oxy 3-oxide; NIT2-py, 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-l-oxy 3 -oxide; $\quad 4 \mathrm{ImNNH}, \quad$ (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3 oxide; $\mathrm{L}_{1}{ }^{\bullet}$, See Ref 6 (azobenzene tempo derivative); $\mathrm{L}_{2}{ }^{\bullet}$ See Ref 6 (azobenzene derivative); $\mathrm{L}_{3}{ }^{\bullet}, 1$-Iodo-3,5-bis($4^{\prime}, 4^{\prime}, 5^{\prime}, 5^{\prime}$-tetramethyl-4', 5^{\prime}-dihydro-1H-imidazole-1'-oxyl)benzene.
${ }^{\text {a }}$ The values have been converted to $\chi_{\mathrm{M}} T$ units $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\right)$ and scaled to fit the appropriate spin Hamiltonian : $\hat{H}=-2 J_{1}\left(\hat{S}_{1} \hat{S}_{2}+\hat{S}_{2} \hat{S}_{3}\right)-2 J_{2}\left(\hat{S}_{1} \hat{S}_{3}\right)$ for a clearer comparison.
${ }^{\mathrm{b}}$ These values corresponding to fits obtained using the spin Hamiltonian form as above.
${ }^{\mathrm{c}}$ The (L^{*}) - $\mathrm{Mn}^{\mathrm{II}}-\left(\mathrm{L}^{\prime}\right)$ moiety has an additional two non-interacting iminoylnitroxide radicals and one non interacting $\mathrm{Mn}(\mathrm{II})$ ion. The plateaux value in this case is $7.9 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ but has been omitted from the table as it was not a direct comparison.
[1] C. Benelli, D. Gatteschi, C. Zanchini, R. J. Doedens, M. H. Dickman, L. C. Porter, Inorg. Chem. 1986, 25, 3453. doi: 10.1021/ic00239a027
[2] M. H. Dickman, L. C. Porter, R. J. Doedens, Inorg. Chem., 1986, 25, 2595. doi: 10.1021/ic00235a022
[3] A. Caneschi, D. Gatteschi, J. Laugier, L. Pardi, P. Rey, C. Zanchini, Inorg. Chem., 1988, 27, 2027. doi: 10.1021/ic00285a007
[4] D. Luneau, G. Risoan, P. Rey, A. Grand, A. Caneschi, D. Gatteschi, J. Laugier, Inorg. Chem., 1993, 32, 5616. doi: 10.1021/ic00076a032
[5] C. Aoki, T. Ishida, T. Nogami, Inorg. Chem., 2003, 42, 7616. doi: 10.1021/ic0349048
[6] M. Fujino, S. Hasegawa, H. Akutsu, J. Yamada, S. Nakatsuji, Polyhedron, 2007, 26, 1989. doi:10.1016/j.poly.2006.09.050
[7] M. G. V. Vaz, H. Akpinar, G. P. Guedes, S. Santos-Jr, M. A. Novak, P. M. Lahti, New. J. Chem., 2013, 37, 1927. doi: 10.1039/c3nj00047h

