Supplementary Material

Solvatomorphism and Electronic Communication in FeIII
N,N-Bis(salicylidene)-1,3-propanediamine Dimers

Jitnapa Sirirak,¹ David J. Harding,¹* Phimphaka Harding,¹ Lujia Liu² and Shane G. Telfer²

¹ Molecular Technology Research Unit Cell, School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
² MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

E-mail: h david@wu.ac.th
Website: https://sites.google.com/site/moleculardesignwu/
1. Supporting Figures

Figure S1 Overlay of the Fe1-Fe2 (grey) and Fe3-Fe4 (colour) dimers in 1.

Figure S2 View of the C-H··O interactions which form the supramolecular Fe3-Fe4 dimeric pairs in 1, * = symmetry code: 2-x, 2-y, 2-z.
Figure S3 View of the C-H⋯O interactions which form the supramolecular Fe1-Fe2 dimeric pairs in 2, * = symmetry code: 2-x, 1-y, 2-z.

Figure S4 View of the Fe1-Fe2 and Fe3-Fe4 planes in 1 viewed on the bc plane.
Figure S5 PXRD of 1 at 20 °C, -120 °C and at 20 °C after heating at 150 °C.

Figure S6 PXRD of 2 at 20 °C, -120 °C and at 20 °C after heating at 150 °C.
Figure S7 Cyclic voltammograms of 1 showing the reduction peaks at different scan rates (in V/s).

Figure S8 Differential pulse voltammograms of [(salpn)Fe(μ²-salpn)Fe(salpn)]·MeOH 2 in CH₂Cl₂ at scan rates varying from 10-100 mV/s.