SUPPLEMENTARY MATERIAL

Nitrogen Containing Ionic Liquids: Biodegradation Studies and Utility in Base Mediated Reactions

Leigh Ford,^{A,D} Kai E. O. Ylijoki,^B M. Teresa Garcia,^C Robert D. Singer,^B and Peter J. Scammells^{A,D}

- ^A Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ^B Atlantic Centre for Green Chemistry, Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada
- ^c Department of Surfactant Technology, IIQAB-CSIC, Jordi Girona 18-26, 08034, Spain
- $^{\mathtt{D}}$ Corresponding authors: E-mail: leigh.ford@monash.edu or peter.scammells@monash.edu

Computational Methods

All computations were conducted with the Spartan'10 and Gaussian 09 (Revision C.01) computational software packages.¹ Initial stationary point searches were carried out with the semiempirical AM1 method.² The lowest energy conformers of **16**, **16-H**⁺, **17**, and **17-H**⁺ were located via an AM1 conformational search. These AM1 optimized structures were then used as starting points for geometry optimization at the B3LYP³/6-31G* level. These DFT optimized structures were then used as starting points for further geometry optimization at the B3LYP/6-311G* level, followed by the B3LYP/6-311++G** level. Vibrational analyses were carried out to confirm the nature of all stationary points and to calculate the thermal corrections (enthalpy and entropy) for 298 K, 1 atm, gas phase. An archive of atomic coordinates in the .pdb file format is provided as Supporting Information.

Computational Details

Computations for the production of DABCO H_2^{2+} from the reaction of DABCO and H_3O^+ were performed at the B3LYP/6-311++G** level. The H°, zero-point energy (ZPE), S°, and G° values are collected in Table S1. Energies in the reaction coordinate are reported as Gibbs energy in kcal/mol.

Table S1: Thermodynamic data for Figure S1.

	H° (Hartree)	ZPE (Hartree)	S° (cal/mol•K)	G° (Hartree)	
DABCO	-345.231570	0.182497	79.327	-345.269261	
DABCOH ⁺	-345.597421	0.198084	80.549	-345.635692	
DABCOH ⁺ TS	-422.221395	0.233764	96.847	-422.267410	
DABCOH ₂ ²⁺	-345.797422	0.212717	80.213	-345.835534	
H_3O^+	-76.693059	0.034307	48.436	-76.716072	
H_2O	-76.433469	0.021282	45.088	-76.454892	

Computations for the production of 15-H⁺ from the reaction of 15 and H_3O^+ were performed at the B3LYP/6-311++G** level. The H°, zero-point energy (ZPE), S°, and G° values are collected in Table S2. Energies in the reaction coordinate are reported as Gibbs energy in kcal/mol.

Table S2: Thermodynamic data for Figure S2.

	H° (Hartree)	ZPE (Hartree)	S° (cal/mol•K)	G° (Hartree)
15	-384.891784	0.225330	87.317	-384.933271
15-H ⁺	-385.098765	0.240147	85.286	-385.139287
H_3O^+	-76.693059	0.034307	48.436	-76.716072
H ₂ O	-76.433469	0.021282	45.088	-76.454892

The ΔG° for protonation of **16** with H_3O^+ was calculated at the B3LYP/6-311++G** level. The protonation transition state was not optimized. The H°, zero-point energy (ZPE), S°, and G° values are collected in Table S3. Energies in the reaction coordinate are reported as Gibbs energy in kcal/mol.

 Table S3: Thermodynamic data.

	H° (Hartree)	ZPE (Hartree)	S° (cal/mol•K)	G° (Hartree)
16	-539.722391	0.286867	122.449	-539.780571
16-H ⁺	-539.975342	0.301612	122.752	-540.033665
H_3O^+	-76.693059	0.034307	48.436	-76.716072
H ₂ O	-76.433469	0.021282	45.088	-76.454892

$$\begin{array}{c} & & & & \\ \hline 0.0 & & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

The ΔG° for protonation of **17** with H_3O^+ was calculated at the B3LYP/6-311++G** level. The protonation transition state was not optimized. The H°, zero-point energy (ZPE), S°, and G° values are collected in Table S4. Energies in the reaction coordinate are reported as Gibbs energy in kcal/mol.

 Table S4: Thermodynamic data.

	H° (Hartree)	ZPE (Hartree)	S° (cal/mol•K)	G° (Hartree)
17	-618.311560	0.344198	127.782	-618.372273
17-H ⁺	-618.566220	0.358198	132.363	-618.629110
H_3O^+	-76.693059	0.034307	48.436	-76.716072
H ₂ O	-76.433469	0.021282	45.088	-76.454892

NMR Spectra

Figure 1A. ¹H NMR of IL 1.

Figure 1B. ¹³C NMR of IL **1.**

Figure 2A. ¹H NMR of IL 2.

Figure 2B. ¹³C NMR of IL **2.**

Figure 3A. ¹H NMR of IL **3.**

Figure 3B. ¹³C NMR of IL **3.**

Figure 4A. ¹H NMR of IL **4.**

Figure 4B. ¹³C NMR of IL **4.**

Figure 5A. ¹H NMR of IL **5.**

Figure 5B. ¹³C NMR of IL **5.**

Figure 6A. ¹H NMR of IL **6.**

Figure 6B. ¹³C NMR of IL **6.**

Figure 7A. ¹H NMR of IL **7.**

Figure 7B. ¹³C NMR of IL **7.**

Figure 8A. ¹H NMR of IL **8.**

Figure 8B. ¹³C NMR of IL **8.**

Figure 9A. ¹H NMR of IL **9.**

Figure 9B. ¹³C NMR of IL 9.

Figure 10A. ¹H NMR of IL **10.**

Figure 10B. 13 C NMR of IL 10.

Figure 11A. ¹H NMR of IL **11.**

Figure 11B. ¹³C NMR of IL **11.**

Figure 12A. ¹H NMR of IL **12.**

Figure 12B. ¹³C NMR of IL **12.**

Figure 13A. ¹H NMR of IL **13.**

Figure 13B. 13 C NMR of IL **13.**

Figure 14A. ¹H NMR of IL **14.**

Figure 14B. ¹³C NMR of IL 14.

Biodegradation Data

 $\textbf{Table S5}. \ \ \textbf{Inhibition Tests of ILs.}$

Compound	Concentration	Inhibition
	(mg C/L)	(%)
14+SDS	20+20	0-10
12 +SDS	20+20	0-10
13 +SDS	20+20	0-10
11+SDS	20+20	0-10
10 +SDS	20+20	0-5
3+SDS	20+20	0-5
1+SDS	20+20	0-5
2+SDS	20+20	0-5
8+SDS	20+20	0-5
7+SDS	20+20	0-5
9+SDS	20+20	0-5
4+SDS	20+20	0-5
5+SDS	20+20	0-5
6+SDS	20+20	0-5

 $\textbf{Table S6}. \ \ \textbf{Biodegradation Tests of ILs.}$

	%	% Biodegradation (IL initial concentration= 20 mg C/l)										
Time (days)	SDS	1	2	3	4	5						
0	0	0	0	0	0	0						
7	<mark>74</mark>	0	0	1	1	0						
14	83	0	3	1	5	0						
21	<mark>89</mark>	1	1	0	4	1						
28	<mark>89</mark>	0	1	0	3	3						

	% Biodegradation (IL initial concentration= 20 mg C/l)										
Time	SDS	6	7	8	9	10					
(days)											
0	<mark>0</mark>	0	0	0	0	0					
7	<mark>74</mark>	0	1	2	1	1					
14	83	0	3	5	3	2					
21	<mark>89</mark>	53	5	5	5	1					
28	<mark>89</mark>	60	4	6	3	1					

	% Biodegradation (IL initial concentration= 20 mg C/l)										
Time	SDS	11	12	13	14						
(days)											
0	0	0	0	0	0						
7	<mark>74</mark>	0	0	0	0						
14	83	1	0	0	0						
21	89	0	0	0	0						
28	89	1	0	0	0						

Characterisation of Reaction Products

Methyl 4'-methoxybiphenyl-4-carboxylate⁴

 1 H NMR (400 MHz, CDCl₃) δ 8.06-8.09 (m, 2H), 7.56-7.63 (m, 4H), 6.98-7.02 (m, 2H), 3.93 (s, 3H), 3.86 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 167.0, 159.8, 145.2, 132.4, 130.1, 128.33, 128.20, 126.4, 114.3, 55.4, 52.1.

4-Methoxybiphenyl

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.56 (m, 4H), 7.29-7.43 (m, 3H), 6.96-6.99 (m, 2H), 3.83 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 140.8, 133.7, 128.6, 128.1, 126.7, 126.6, 114.2, 55.3.

3,5-Dimethyl-p-terphenyl

¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 4H), 7.64 (d, J = 7.7 Hz, 2H), 7.45 (t, J= 7.7 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.26 (s, 2H), 7.00 (s, 1H), 2.39 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 141.0, 140.7, 140.2, 138.6 (2C), 129.3, 129.1 (2C), 127.8 (2C), 127.7 (2C), 127.5, 127.3 (2C), 125.3 (2C), 21.5 (2C).

1-(4-(2-Phenylethynyl)phenyl)ethanone

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.30 Hz, 2H), 7.61 (d, J = 8.40 Hz, 2H), 7.57-7.53 (m, 2H), 7.38-7.36 (m, 3H), 2.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 136.1, 131.7, 131.6, 128.7, 128.4, 128.2, 122.6, 92.6, 88.5, 29.6.

1,2-Diphenylethyne

¹H NMR (400 MHz, CDCl₃) δ 7.55-7.52 (m, 4H), 7.36-7.33 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 131.5, 128.4, 128.2, 123.2, 89.3.

Methyl α-cyanocinnamate

 1 H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.00-8.01 (m, 2H), 7.48-7.58 (m, 3H), 4.39 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). δ 163.1, 155.5, 133.6, 131.5, 131.3, 129.4, 115.6, 102.7, 53.6.

3-Hydroxy-2-methylene-3-phenylpropanoic acid methyl ester

 1 H NMR (400 MHz, CDCl₃) δ 7.27-7.40 (m, 5H), 6.35 (dd, J = 1.2, 0.8 Hz, 1H), 5.85 (t, J = 1.2 Hz, 1H), 5.58 (s, 1H), 3.73 (s, 3H). 13 C NMR (100 MHz, CDCl₃) δ 166.7, 141.8, 141.2, 128.4, 127.8, 126.5, 1261, 73.1, 51.9.

#			[min]	Area [mAU*s]	Height [mAU]	Area %
1		•			4.50009	
2	1.544	BV	0.0558	11.95656	3.38119	0.2005
3	1.638	VR	0.0449	5894.07617	2065.32910	98.8153

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	0.954	MM	0.0610	1307.62964	357.13321	97.3379	
2	1.596	MM	0.0361	35.76311	16.51894	2.6621	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.605	MM	0.0464	3323.75122	1193.91992	95.1446
2	2.393	MM	0.1541	128.33592	13.87587	3.6737
3	4.620	MM	0.0354	41.28158	19.43226	1.1817

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							ĺ
1	1.598	MM	0.0437	1368.69775	521.44641	100.0000	

General Procedures for reactions in IL solvent

Note- All yields unless otherwise indicated are isolated yields, the complete extraction of organics into 4:1 hexanes:Et₂O is confirmed by both 1H NMR of the IL solvent in addition to LC/MS.

Suzuki-Miyuara reaction

Method A - (aq. base)

To ionic liquid (2 mmol), (previously heated overnight at 65° C under vacuum [1 mBar]) was added aryl iodide (0.5mmol), followed by boronic acid (0.55mmol). This mixture was degassed via successive purges with vacuum and nitrogen (x3), Pd(PPh₃)₂Cl₂ (0.05mmol) was added and the degassing was repeated. To this mixture was added 2M aq. Na₂CO₃ (1 mL) which had been degassed via sonication under nitrogen gas. The resulting mixture was heated directly at 90 °C for 1.5h, monitoring by tlc. (10:1 Pet. Sp. : EtOAc – as appropriate). Upon completion of the reaction 5mL CH₂Cl₂ was added and the organic layer collected, the aq. layer was washed with a further 2 x 5mL CH₂Cl₂ the combined organic portions were combined, dried (Na₂SO₄) concentrated in vacuo to give crude material which was extracted with 4 : 1 Pet. Sp. : Et₂O or 4 : 1 toluene : Et₂O {as appropriate} (3 x 25 mL), this solution was concentrated in vacuo and the crude material subjected to flash chromatography (loading with toluene).

Method B – (no aq. base)

To ionic liquid (2 mmol), (previously heated overnight at 65°C under vacuum [1 mBar]) was added aryl iodide (0.5mmol), followed by boronic acid (0.55mmol). This mixture was degassed via successive purges with vacuum and nitrogen (x3), Pd(PPh₃)₂Cl₂ (0.05mmol) was added and the degassing was repeated. The resulting mixture was heated directly at 90 °C for 1.5h, monitoring by tlc. (10:1 Pet. Sp. : EtOAc – as appropriate).

Sonogashira reaction

Method A - (Et₃N)

To ionic liquid (4 mmol), (previously heated overnight at 65°C under vacuum [1 mBar]) was added aryl iodide (1.5 mmol), alkyne (1.65 mmol), triethylamine (2.25 mmol) and PdCl₂ (2 mol%). The resulting solution was degassed by bubbling nitrogen for 10 minutes. The reaction mixture was stirred for 5h with occasional sonication. The IL was extracted with 4:1 Pet. Sp: EtOAc (3 x 25mL) this solution was concentrated in vacuo and the crude material subjected to flash chromatography (loading with toluene).

Method B – as above without triethylamine

Knoevenagel reaction

To ionic liquid (0.5 mmol), (previously heated overnight at 65°C under vacuum [1 mBar]) was added benaldehyde (4 mmol) followed by ethyl cyanoacetate (4 mmol), the resulting solution was stirred overnight (16h) at room temperature, monitoring by tlc. The IL was extracted with 4:1 Pet. Sp: EtOAc (3 x 25mL) this solution was concentrated in vacuo and the crude material subjected to flash chromatography (loading with toluene).

Baylis-Hillman reaction

To ionic liquid (2 mmol), (previously heated overnight at 65°C under vacuum [1 mBar]) was added a mixture of methyl acrylate (2 mmol) and benzaldehyde (2 mmol), the resulting solution was stirred overnight (26h) at room temperature, the reaction was monitored by tlc and LCMS.

References

- (a) Spartan '10; Wavefunction, Inc.; Irvine, CA, 2011; http://www.wavefun.com. (b) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- 2. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
- (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 4. Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553.