10.1071/CH14525_AC ©CSIRO 2015 Australian Journal of Chemistry, 2015, 68 (7), 1091-1101

SUPPLEMENTARY MATERIAL

Synthesis and catalytic applications of chemically grafted SiH-functionalized tripodal Ti-POSS complexes in crosslinked hyperbranched poly(siloxysilane)

Emad H. Aish^{a,b,*}

^aDepartment of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, K SA ^bDepartment of Chemistry, Faculty of Science, Menoufiya University, Menoufiya, Egypt *Corresponding author. Fax: +966 035886437.

E-mail address: Emad.Aish@uky.edu (E.H. Aish).

Figure S1. ¹HNMR (CDCl₃) spectrum of $(ClSiMe_2(CH_2)_3)(i-C_4H_9)_7Si_8O_{12}$ (1)

Figure S2. ¹³C NMR (CDCl₃) spectrum of $(ClSiMe_2(CH_2)_3)(i-C_4H_9)_7Si_8O_{12}(1)$

Figure S3. ²⁹SiNMR (CDCl₃) spectrum of $(ClSiMe_2(CH_2)_3)(i-C_4H_9)_7Si_8O_{12}$ (1)

Figure S4. ¹HNMR (CDCl₃) spectrum of $(HSiMe_2(CH_2)_3)(i-C_4H_9)_7Si_8O_{12}$ (2)

Figure S5. ¹³C NMR (CDCl₃) spectrum of $(HSiMe_2(CH_2)_3)(i-C_4H_9)_7Si_8O_{12}$ (2)

Figure S6. ²⁹SiNMR (CDCl₃) spectrum of $(HSiMe_2(CH_2)_3)(i-C_4H_9)_7Si_8O_{12}$ (2)

Figure S7. ¹HNMR (CDCl₃) spectrum of $\{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_9(OH)_3\}$ (3)

Figure S8. ¹³C NMR (CDCl₃) spectrum of $\{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_9(OH)_3\}$ (3)

Figure S9. ²⁹SiNMR (CDCl₃) spectrum of $\{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_9(OH)_3\}$ (3)

Figure S10, ²⁹SiNMR (CDCl₃) spectrum of $(p-ClSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_7Si_8O_{12}$ (4)

Figure S11. ¹HNMR (CDCl₃) spectrum of $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_7Si_8O_{12}$ (5)

Figure S12. ²⁹SiNMR (CDCl₃) spectrum of $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_7Si_8O_{12}$ (5)

Figure S13. ¹HNMR (CDCl₃) spectrum of $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_9(OH)_3$ (6)

Figure S14. ¹³C NMR (CDCl₃) spectrum of $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_9(OH)_3$ (6)

Figure S15. ¹HNMR (CDCl₃) spectrum of $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}]Ti(OPr^i)]$ (7)

Figure S16. ²⁹SiNMR (CDCl₃) spectrum of $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}Ti(OPr^i)]$ (7)

Figure S17. ¹HNMR (CDCl₃) spectrum of $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}Ti(NMe_2)]$ (8)

Figure S19. ²⁹SiNMR (CDCl₃) spectrum of $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}Ti(NMe_2)]$ (8)

Figure S20. UV-vis spectrum of $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}]Ti(NMe_2)]$ (8)

Figure S21. UV-vis spectrum of $[{(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}}Ti(NMe_2)]$ (9)

Overlaid Sample Spectra

Figure S22. ¹HNMR (CDCl₃) spectrum of $[{(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}}Ti(NMe_2)]$ (9)

Figure S23. ¹³C NMR (CDCl₃) spectrum of $[{(p-HSiMe_2(CH_2)_2C_6H_4)(c-_6H_{11})_6Si_7O_{12}}]Ti(NMe_2)]$ (9)

Figure S26. ¹³C NMR (d₈-toluene) spectrum of *crosslinked hyperbranched poly(siloxysilane)*bound [{ $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}$]Ti(NMe₂)] (**11**)

Figure S27. UV-vis spectrum of *crosslinked hyperbranched poly(siloxysilane)-bound* [{ $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}$ }Ti(NMe_2)] (11)

Figure S28. UV-vis spectrum of used *crosslinked hyperbranched poly(siloxysilane)-bound* [{ $(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}$]*Ti*(NMe_2)] (11)

		11 00-
#	Name	Abs<235nm>
1		1.76540

Figure S29. ¹H NMR (CDCl₃) spectrum of *crosslinked hyperbranched poly(siloxysilane)-bound* $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}]Ti(NMe_2)]$ (12)

Figure S30. ²⁹SiNMR (CDCl₃) spectrum of *crosslinked hyperbranched poly(siloxysilane)-bound* $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}Ti(NMe_2)]$ (**12**)

Figure S31. UV-vis spectrum of crosslinked hyperbranched poly(siloxysilane)-bound $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}Ti(NMe_2)]$ (12)

Figure S32. UV-vis spectrum of used crosslinked hyperbranched poly(siloxysilane)-bound $[{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}}Ti(NMe_2)]$ (12)

Sample/Result Table

#	Name		Abs	<230nm>	
1	ः २			2.35906	

Figure S33. A typical GC chromatograph of 1-octene epoxidation with aq. H_2O_2 using crosslinked hyperbranched poly(siloxysilane)-grafted [{($HSiMe_2(CH_2)_3$)($i-C_4H_9$)_6 Si_7O_{12} } $Ti(NMe_2)$] (12) as a catalyst after 12 h.

Figure S34. A typical GC chromatograph of cyclohexene epoxidation with aq. H_2O_2 using crosslinked hyperbranched poly(siloxysilane)-grafted [{(HSiMe_2(CH_2)_3)(i-C_4H_9)_6Si_7O_{12}]Ti(NMe_2)]} (12) as a catalyst after 10 h.

Figure S35. A typical GC chromatograph of 1-octene epoxidation with aq. H_2O_2 using crosslinked hyperbranched poly(siloxysilane)-grafted [{(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}}Ti(NMe_2)] (11) as a catalyst after 15 h.

Figure S36. A typical GC chromatograph of cyclohexene epoxidation with aq. H_2O_2 using crosslinked hyperbranched poly(siloxysilane)-grafted [{(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}}]Ti(NMe_2)] (11) as a catalyst after 15 h.

Figure S37. A typical GC chromatograph of 1-octene epoxidation with aq. H_2O_2 using *crosslinked hyperbranched poly(siloxysilane)-grafted* [{($HSiMe_2(CH_2)_3$)(*i*- C_4H_9)_6 Si_7O_{12} }*Ti*(NMe_2)] (12) as a catalyst after 2 h on comparison with TS-1.

Figure S38. A typical GC chromatograph of 1-octene epoxidation with aq. H_2O_2 using crosslinked hyperbranched poly(siloxysilane)-grafted [{(p-HSiMe_2(CH_2)_2C_6H_4)(c-C_6H_{11})_6Si_7O_{12}}]Ti(NMe_2)] (11) as a catalyst after 2 h on comparison with TS-1.

