Supplementary Material

Reactivity of β-diketiminato magnesium alkyl complexes: heterocumulenes and phosphanes

Morgan J. Taylor, Martyn P. Coles, and J. Robin Fulton

Department of Chemistry, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.

Current address: School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, NZ.

Corresponding author. Email: j.robin.fulton@vuw.ac.nz

Fig S1 1H NMR spectrum of [(BDI)Mg(MeC{NCy}2)] (3) S2
Fig S2 13C NMR spectrum of [(BDI)Mg(MeC{NCy}2)] (3) S3
Fig S3 Thermal ellipsoid plot of [(BDI)Mg(MeC{NCy}2)] (3) S4
Fig S4 1H NMR spectrum of [(BDI)Mg(BnC{NCy}2)] (4) S5
Fig S5 13C NMR spectrum of [(BDI)Mg(BnC{NCy}2)] (4) S6
Fig S6 1H NMR spectrum of [(BDI)Mg(PPh2)(THF)] (5) S7
Fig S7 13C NMR spectrum of [(BDI)Mg(PPh2)(THF)] (5) S8
Fig S8 Thermal ellipsoid plot of [(BDI)Mg(PPh2)(THF)] (5) S9
Fig S9 1H NMR spectrum of [(BDI)Mg(PCy2)(THF)] (6) S10
Fig S10 13C NMR spectrum of [(BDI)Mg(PCy2)(THF)] (6) S11
Figure S1. 1H NMR spectrum of [(BDI)Mg(MeC{NCy})]$_2$ (3)

1H NMR (500 MHz, ccd, δ 3.49 (dt, $J = 13.8, 6.8$ Hz, 3H), 2.83 (ddd, $J = 13.8, 10.2, 3.5$ Hz, 3H), 1.59 (d, $J = 11.5$ Hz, 2H), 1.30 (d, $J = 6.8$ Hz, 3H), 1.29 (d, $J = 6.9$ Hz, 4H), 1.21 – 0.91 (m, 3H).
Figure S2. 13C NMR spectrum of [(BDI)Mg(MeC\{NCy\}_2)] (3).
Figure S3. Thermal ellipsoid plot of [(BDI)Mg(MeC{NCy}2)] (3).
Figure S4. 1H NMR spectrum of [(BDI)Mg(BnCNCy)$_2$] (4).
Figure S5. 13C NMR spectrum of [(BDI)Mg(BnC{NCy$_2$})] (4).
Figure S6. 1H NMR spectrum of [(BDI)Mg(PPh$_2$)(THF)] (5).
Figure S7. 13C NMR spectrum of [(BDI)Mg(PPh$_2$)(THF)] (5).
Figure S8. Thermal ellipsoid plot of [(BDI)Mg(PPh$_2$)(THF)] (5).
Figure S9. 1H NMR spectrum of [(BDI)Mg(PC$_2$)(THF)] (6).
Figure S10. 13C NMR spectrum of [(BDI)Mg(PC$_2$)(THF)] (6).