10.1071/CH14555_AC ©CSIRO 2015 Australian Journal of Chemistry, 2015, 68 (7), 1084-1090

Supplementary Material

A Comparison of the Lewis Basicity of Diamidocarbenes and Diaminocarbenes Chin-Hung Lai

Table of contents		Pages
1.	The M06-2X-optimized geometries of the mentioned spices	2-8
2.	Table S1	9
3.	Table S2	10-12
4.	The computational methods	13-14
5.	Supplementary references	15-16

The converged geometry of BH₃

В	0.000000	-0.000030	0.000000
Н	0.666771	0.980754	0.000000
Н	0.515982	-1.067629	0.000000
Н	-1.182753	0.087023	0.000000

The converged geometry of **4**

С	0.000018	-1.271371	0.000000
N	-1.044510	-0.401093	0.000000
С	-0.673414	0.932951	0.000000
С	0.673419	0.932986	0.000000
N	1.044526	-0.401078	0.000000
Η	-1.995777	-0.722005	0.000000
Η	1.995793	-0.722015	0.000000
Η	-1.375769	1.745763	0.000000
Н	1.375502	1.746057	-0.000001

The converged geometry of **5**

С	0.000706	-1.327296	0.001645
N	-1.057847	-0.504938	0.073217
С	-0.763481	0.926363	-0.075135
С	0.762556	0.926885	0.075898
N	1.058388	-0.503739	-0.076631
Н	-1.994164	-0.861323	0.033534
Н	1.994691	-0.859268	-0.028394
Н	-1.258971	1.523050	0.688185
Н	-1.073378	1.289100	-1.057353
Н	1.257258	1.526400	-0.685707
Η	1.072090	1.287071	1.059183

The converged geometry of **6**

С	0.000685	-1.783913	0.000000
N	-1.077151	-0.944989	0.000000
С	-0.773525	0.411837	0.000000
С	0.773255	0.412310	0.000000
N	1.078016	-0.944013	0.000000
Η	-2.022486	-1.292490	0.000001
Н	2.023582	-1.290830	0.000001

0	-1.508464	1.347178	0.000000
0	1.507259	1.348439	0.000000

The converged geometry of **7**

С	-0.000118	1.786560	-0.000001
N	1.127959	1.039861	0.000000
С	1.282294	-0.349929	0.000000
С	0.000197	-1.139662	0.000007
С	-1.282166	-0.349484	-0.000001
N	-1.128834	1.039671	0.000002
Η	2.003381	1.544927	-0.000001
Η	-2.003882	1.545227	0.000005
Η	0.000240	-1.797088	-0.870369
Η	0.000239	-1.797068	0.870398
0	2.368412	-0.858137	-0.000005
0	-2.367799	-0.859067	-0.000005

The converged geometry of ${\bf 8}$

С	0.000001	-1.810299	-0.000003
N	1.155291	-1.127274	0.161349
С	1.619411	0.190377	-0.057768
С	0.613625	1.230272	-0.452643
С	-0.613628	1.230260	0.452672
С	-1.619411	0.190375	0.057765
N	-1.155295	-1.127281	-0.161330
Н	1.948804	-1.734408	0.323505
Н	-1.948804	-1.734414	-0.323507
Н	0.321282	1.052155	-1.491178
Н	1.130657	2.184539	-0.412091
Н	-0.321284	1.052115	1.491201
Н	-1.130660	2.184528	0.412143
0	-2.794229	0.411970	-0.055390
0	2.794234	0.411963	0.055348

The converged geometry of H_3B-4

В	-2.288915	-0.000023	0.011391
С	-0.695077	0.000028	-0.020135
Н	-2.593812	0.002804	1.186443

Η	-2.668149	1.010306	-0.537981
Н	-2.667933	-1.012958	-0.533303
N	0.134688	-1.056681	-0.012193
С	1.462369	-0.674144	0.010837
С	1.462399	0.674087	0.010836
Ν	0.134745	1.056705	-0.012198
Н	-0.219033	-1.998673	-0.024581
Н	2.274058	-1.376558	0.019268
Н	2.274124	1.376461	0.019274
Н	-0.218860	1.998737	-0.024566

The converged geometry of H_3B-5

С	0.764114	-0.005001	-0.031166
Ν	-0.024525	-1.073847	0.067791
С	-1.442737	-0.759699	-0.078380
С	-1.430084	0.768014	0.111563
Ν	-0.020463	1.068861	-0.119063
Η	0.365664	-1.997388	-0.000052
Η	0.380004	1.989571	-0.072767
Η	-2.048670	-1.265294	0.669331
Η	-1.799236	-1.038769	-1.071637
Η	-2.074967	1.281212	-0.597339
Η	-1.723798	1.046884	1.125321
В	2.352646	-0.002183	0.018494
Η	2.750742	0.967098	-0.585875
Η	2.599224	0.099006	1.205037
Н	2.754972	-1.056376	-0.417689

The converged geometry of H_3B-6

		-	
В	2.827808	-0.000003	0.028548
С	1.276674	0.000005	-0.050333
Н	2.924353	0.000088	1.251483
Н	3.265169	-1.030146	-0.412497
Н	3.265188	1.030074	-0.412630
N	0.474315	1.091146	-0.037269
С	-0.881293	0.775148	0.000173
С	-0.881288	-0.775152	0.000173
Ν	0.474321	-1.091140	-0.037272

Η	0.853121	2.026443	-0.051754
0	-1.814068	1.508345	0.022256
0	-1.814060	-1.508352	0.022260
Η	0.853136	-2.026434	-0.051766

The converged geometry of H_3B-7

С	1.328984	0.000399	-0.029214
Ν	0.624199	1.143948	-0.021624
С	-0.767028	1.283552	-0.004869
С	-1.535849	-0.000099	0.171677
С	-0.766749	-1.283659	-0.004728
N	0.624169	-1.143179	-0.030698
Η	1.164443	1.998878	-0.077083
Н	1.164547	-1.997821	-0.089305
Н	-1.930092	0.000072	1.191979
Н	-2.399410	-0.000402	-0.489799
0	-1.281204	2.359718	-0.096678
0	-1.280728	-2.360341	-0.091546
В	2.900513	-0.000056	0.035166
Η	3.058386	-0.006213	1.246407
Η	3.319863	-1.022306	-0.446552
Н	3.320430	1.026508	-0.436628

The converged geometry of H₃B-8

С	0.025471	1.393912	-0.042014
Ν	-1.158107	0.778982	0.114745
С	-1.638249	-0.535700	-0.068703
С	-0.645228	-1.600885	-0.425782
С	0.579391	-1.595116	0.485962
С	1.610845	-0.594617	0.058729
Ν	1.179896	0.724777	-0.200853
Н	-1.915838	1.439399	0.255143
Н	1.960865	1.347876	-0.378791
Н	-0.346971	-1.463374	-1.468629
Н	-1.177884	-2.544684	-0.355996
Н	0.289427	-1.378335	1.517607
Н	1.075174	-2.561299	0.477405
0	2.776160	-0.843756	-0.064678

0	-2.814032	-0.730530	0.054521
В	0.075349	2.977480	0.042878
Н	0.236194	3.130361	1.242661
Н	1.043653	3.371643	-0.560219
Н	-0.984294	3.433424	-0.308717

The converged geometry of BH₂

В	0.000000	0.148599	0.000000
Η	1.064401	-0.371497	0.000000
Η	-1.064401	-0.371498	0.000000

The converged geometry of H_2B-4

В	2.278557	0.000235	0.000000
С	0.782347	0.000064	0.000000
Η	2.849638	-1.045963	-0.000001
Η	2.849124	1.046767	0.000000
Ν	-0.078254	1.076431	0.000000
С	-1.397130	0.673922	0.000000
С	-1.396818	-0.674059	0.000000
Ν	-0.077794	-1.076587	0.000000
Η	0.251910	2.024003	0.000000
Η	0.252516	-2.024124	-0.000001
Η	-2.217271	1.366852	0.000000
Н	-2.216759	-1.367176	0.000000

The converged geometry of H_2B-5

С	0.840384	-0.000048	-0.000097
Ν	0.017631	-1.087318	0.162581
С	-1.360543	-0.747036	-0.161630
С	-1.360285	0.747164	0.162082
Ν	0.017664	1.087268	-0.163420
Η	0.390166	-1.996451	-0.051955
Η	0.390350	1.996238	0.051637
Η	-2.070097	-1.308966	0.441227
Η	-1.578957	-0.910136	-1.222096
Η	-2.070315	1.309185	-0.440122
Н	-1.577695	0.910258	1.222755
В	2.343483	-0.000039	0.000286

Н	2.917343	-1.037468	0.120065
Н	2.917384	1.037399	-0.119198

The converged geometry of H_2B-6

В	2.851240	0.000129	0.000000
С	1.345959	0.000448	0.000000
Н	3.418223	1.042891	0.000000
Н	3.416804	-1.043454	0.000000
Ν	0.517842	-1.094326	0.000000
С	-0.825989	-0.767862	0.000000
С	-0.826433	0.767663	0.000000
Ν	0.517277	1.094847	0.000000
Н	0.862341	-2.041126	0.000000
Н	0.861150	2.041871	0.000000
0	-1.763437	-1.511246	0.000000
0	-1.764285	1.510500	0.000000

The converged geometry of H_2B-7

С	1.399169	0.000520	-0.000058
Ν	0.664070	1.158857	-0.000010
С	-0.709837	1.287942	0.000022
С	-1.493160	-0.000541	-0.000600
С	-0.708903	-1.288455	0.000024
Ν	0.664905	-1.158356	0.000006
Н	1.180276	2.027602	0.000188
Н	1.181774	-2.026704	0.000197
Н	-2.151420	-0.000793	0.868996
Н	-2.149820	-0.000815	-0.871429
0	-1.235755	2.371461	0.000390
0	-1.234060	-2.372340	0.000383
В	2.905048	0.001016	-0.000064
Н	3.472697	1.044943	-0.000054
Н	3.473332	-1.042588	-0.000065

The converged geometry of H_2B-8

С	-0.001167	1.456508	0.000124
N	-1.186872	0.781689	0.187513
С	-1.629442	-0.510195	-0.073853

С	-0.608218	-1.540151	-0.463993
С	0.610070	-1.542075	0.458210
С	1.630215	-0.508454	0.074943
Ν	1.186987	0.784421	-0.179716
Η	-1.962946	1.397791	0.392802
Η	1.962251	1.401591	-0.384839
Η	-0.302255	-1.365494	-1.498443
Η	-1.123002	-2.495934	-0.428377
Η	0.303697	-1.374309	1.493658
Η	1.126207	-2.496900	0.416768
0	2.806366	-0.752558	-0.039001
0	-2.805011	-0.756415	0.040805
В	-0.003260	2.966582	-0.004294
Η	-1.035518	3.536796	0.146378
Η	1.027470	3.538765	-0.158080

Table S1. The calculated electronic energies (in hartree), and dipole moments

	The calculated electronic	The dipole moment (in
	energies (in hartree) ^a	debye)
H ₃ B-4	-252.8526302	6.892
H ₃ B-5	-254.0511704	7.214
H ₃ B-6	-402.1108466	0.2811
H ₃ B-7	-441.4406161	2.831
H ₃ B-8	-480.7399158	4.553
H ₂ B-4	-252.2254877	4.509
H ₂ B-5	-253.4270434	4.384
H ₂ B-6	-401.5110186	3.940
H ₂ B-7	-440.8337424	1.120
H ₂ B-8	-480.1316118	0.5544

(in debye) for H_3B -X, and H_2B -X (X = 4, 5, 6, 7, and 8).

a. The value without correcting for the zero-point energy.

	The vibrational	The rotational
	frequencies (cm ⁻¹) ^A	constants (GHz)
H ₃ B-4	74, 208, 256, 581, 628, 628, 690, 704, 744, 854, 869, 901, 936, 984, 1081, 1134, 1143, 1161, 1165, 1180, 1249, 1300, 1424, 1464, 1546, 1648, 2463, 2494, 2519, 3278, 3298, 3667, 3670	8.695, 3.393, 2.489
H ₃ B-5	99, 132, 161, 268, 486,518, 582, 598, 715, 850,880, 898, 946, 1005,1034, 1076, 1131, 1137,1156, 1183, 1222, 1229,1263, 1315, 1368, 1373,1506, 1535, 1556, 1588,2456, 2496, 2528, 3063,3069, 3124, 3136, 3677,3687	7.495, 3.151, 2.336
H ₃ B-6	124, 133, 175, 244, 322,391, 520, 575,575, 649, 653, 694, 786,828, 835, 859,989, 1064, 1086,1098, 1156, 1211,1306, 1337, 1451,1546, 1937, 1949,2397, 2533, 2592, 3619,3623	3.800, 1.866, 1.264

Table S2. The calculated vibrational frequencies (in cm⁻¹), and rotational constants (in GHz) for H_3B-X , and H_2B-X (X = 4, 5, 6, 7, and 8).

H ₃ B-7	55, 109, 144, 150,259, 393, 442, 470, 495,539, 573, 594, 627, 785,787, 847,849, 893, 935, 961,1041, 1112, 1123, 1166,1199, 1208, 1232, 1314,1361, 1404, 1417, 1541,1573, 1873, 1890, 2428,2518, 2570, 3071, 3147,3575, 3580	1.888, 1.880, 0.9573
H ₃ B-8	67, 114, 137, 152, 188, 262, 330, 339, 448, 479, 531, 568, 579, 631, 739, 790, 802, 827, 843, 875, 906, 969, 994, 1023, 1073, 1118, 1137, 1159, 1178, 1199, 1238, 1266, 1337, 1371, 1395, 1443, 1471, 1481, 1546, 1570, 1869, 1874, 2440, 2515, 2561, 3060, 3073, 3148, 3153, 3534, 3539	1.725, 1.309, 0.7738
H ₂ B-4	206, 279, 404, 494, 516, 618, 621, 673, 713, 754, 825, 853, 922, 950, 1075, 1137, 1146, 1189, 1270, 1312, 1403, 1426, 1529, 1646, 2616, 2692, 3277, 3298, 3707, 3708	8.776, 3.665, 2.585
H ₂ B-5	167, 238, 285, 408, 509,549, 569, 665, 686, 850,880, 898, 946, 1005,1034, 1076, 1131, 1137,1156, 1183, 1222, 1229,1263, 1315, 1368, 1373,	7.583, 3.388, 2.451

	1506, 1535, 1556, 1588,	
	2456, 2496, 2528, 3063,	
	3069, 3124, 3136, 3677,	
	3687	
	153, 164, 245, 325, 396,	3 8/8 1 0/8 1 203
H ₂ B-6	463, 578, 594, 599, 614,	5.040, 1.740, 1.275
	657, 672, 793, 819, 861,	
	877,	
	988, 1122, 1183, 1285,	
	1308, 1340,	
	1417, 1570, 1875,	
	1884, 2664, 2751,	
	3649, 3652	
U D 7	53, 134, 143, 263, 391,	1.987. 1.876. 0.9706
H_2B-7	406, 482, 485, 496, 551,	
	575, 602, 622, 724, 730,	
	840, 856, 912, 948, 961,	
	1037, 1190, 1223, 1277,	
	1304, 1329, 1382, 1392,	
	1435, 1481, 1604, 1827,	
	1844, 2652, 2736, 3095,	
	3134, 3602, 3605	
H.R.8	62, 128, 140, 190, 265,	1.818, 1.302, 0.7859
112D-0	325, 343, 436, 449, 501,	
	544, 578, 599, 616, 719,	
	770, 785, 819, 823, 862,	
	897, 981, 988, 1050,	
	1073, 1175, 1177, 1226,	
	1305, 1307, 1342, 1374,	
	1408, 1422, 1477, 1478,	
	1482, 1588, 1821, 1828,	
	2643, 2727, 3063, 3073,	
	3146, 3149, 3579, 3582	

^A The value without multiplying a scaling factor.

Computational Methods

In a previous study of the 1,2-H shift in imidazole-2-ylidene,^[S1] results at the M06-2X/cc-pVTZ theoretical level showed the least deviation from results obtained at the BD(T)/cc-pVQZ theoretical level. Therefore, M06-2X/cc-pVTZ is suitable for describing the stability and reactivity of carbenes, and thus was used to examine the Lewis basicities of the carbenes in this study. All stationary points were positively identified as equilibrium structures (number of imaginary frequencies = 0).

To investigate bonding differences between the boron-carbenic center in the H₃B-NAC complex and H₃B-NHC complex, natural bond orbital (NBO) and combined charge and bond energy (ETS-NOCV) analyses were performed.^[S2] NBOs represent orthonormal sets of localized "maximum occupancy" orbitals, which describe the molecular bonding pattern of electron pairs to yield the most accurate Lewis-like description of the total N-electron density. Except for the BP86 single-point calculations and BP86 ETS-NOCV analyses, all calculations were performed using the Gaussian09 program.^[S3] The BP86 single-point calculations and BP86 ETS-NOCV analyses were performed using the Amsterdam Density Functional (ADF) program.^[S4] The DZP basis set was chosen for the single-point calculations and ETS-NOCV analyses. Voronoi polyhedra were chosen to perform the numerical integration in the ETS-NOCV analyses (the keyword "te Velde" was set to 5).^[S5,S6]

Furthermore, the core shells of all atoms were set to be small. The calculations of the distortion energy are based on the BP86 single-point calculations on the M06-2X-optimized geometries of BH_3 in the H_3B-X complexes, carbenes in the H_3B-X complexes, free BH_3 , and uncomplexed carbenes.

Supporting references:

- [S1] C.-H. Lai, J. Mol. Model. 2013, 19, 2935.
- [S2] J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211.
- [S3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
- Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
- Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
- Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
- Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E.
- Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
- Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.
- S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B.
- Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
- A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.
- G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
- Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian09 **2009** (Gaussian Inc.: Wallingford, CT).
- [S4] ADF2013.01 COSMO-RS, SCM: M. Franchini, P. H. T. Philipsen, L. Visscher,*J. Comp. Chem.* 2013, *21*, 1819. Available online at: http://www.scm.com.
- [S5] A. D. Becke, Phys. Rev. A 1988, 38, 3098.

[S6] J. P. Perdew, Phys. Rev. B 1986, 33, 8822.