Supplementary Material

Synthesis of Dichotomin A: Use of a Penicillamine Derived Pseudoproline to Furnish Native Valine Residues

Michelle S. Y. Wong^A, Deni Taleski^A, Katrina A. Jolliffe^A,^B

^ASchool of Chemistry, The University of Sydney, NSW 2006, Australia. ^BCorresponding author. Email: kate.jolliffe@sydney.edu.au

Table of contents:

S2-S5: Figures S1-S6 – evidence for *cisoid* and *transoid* amide bonds from 2D NMR experiments

S6-7: Table S1 - Comparison of ¹H and ¹³C NMR signals of isolated and synthesised samples of dichotomin A **1**.

S8-13: ¹H and ¹³C NMR spectra for compounds **4**, **2**, **3**, **8**, **11**, **1**.

Figures and Tables

Figure S1. Characteristic NOE interactions indicative of *cis* or *trans* conformation of the Tyr(*t*Bu)-Pen($\Psi^{H,H}$ Pro) amide bond.

Figure S2. Partial ROESY spectra of dichotomin A linear precursor **2**, collected on a 500 MHz spectrometer in DMSO-*d*₆. (a) Characteristic cross peaks between the Tyr- α -H and the Pen- α -H signals indicate that the conformation of the Tyr(*t*Bu)-Pen($\Psi^{Me,Me}$ Pro) amide bond is *cis*. (b) Cross peaks between the Ψ Pro-CH₃ and the Tyr- α -H signals, which would indicate the *trans* conformation, are absent.

Figure S3. Partial ROESY spectra of dichotomin A linear precursor **3**, collected on a 500 MHz spectrometer in DMSO- d_6 . (a) The presence of a characteristic cross peak between the Tyr- α -H and the Pen- α -H signals indicating that the Tyr(tBu)-Pen($\Psi^{Me,Me}$ Pro) amide bond is in the *cis* conformation, and the absence of Ψ Pro-CH₃-Tyr- α -H cross peaks which would be evidence of the *trans* form. (b) NOE interaction between the Tyr- α -H and Gly-NH signals, providing further evidence of a *cis* amide bond.

Figure S4. Excerpts from the ROESY spectrum of $Pen(\Psi^{Me,Me}Pro)$ -containing cyclic hexapeptide **8**, collected on a 500 MHz in DMSO-*d*₆. (a) The Tyr(*t*Bu)-Pen($\Psi^{Me,Me}Pro$) amide bond is in the *cis* conformation, as indicated by cross peaks between the Tyr- α -H and Pen- α -H signals, and the absence of characteristic *trans* cross peaks between the Ψ Pro-CH₃ and Tyr- α -H signals. (b) A cross peak between the Tyr- α -H and Gly-NH signals also indicates the *cis* conformation.

Figure S5. Characteristic NOE interactions indicative of *cis* or *trans* conformation in the Tyr-Val amide bond.

Figure S6. Partial ROESY spectrum of dichotomin A **1**, collected on a 500 MHz spectrometer in DMSO- d_6 . (a) The presence of a cross peak between the Val-NH and Tyr- α -H signals, and the absence of a cross peak between the Tyr- α -H and Gly-NH signals indicates that the Tyr-Val amide bond is in the *trans* conformation in the natural product. (b) The absence of NOE interactions between the Tyr- α -H and Val- α -H peaks provides further evidence of the *trans* conformation.

Table S2. Comparison of ¹H and ¹³C NMR signals of isolated and synthesised samples of dichotomin A **1**. $\Delta\delta_{\rm H}$ of labile NH groups are highlighted in blue. Spectral data for the both samples were collected in pyridine-*d*₅. Spectral data for the isolated sample were collected on a 500 MHz spectrometer, and data for the synthetic sample were collected on a 400 MHz.

Assignment-	$\delta_{\rm H} (J \text{ in Hz})$		45	$\delta_{\rm C}$		4.5
	Natural	Synthetic	$\Delta\delta_{\rm H}$	Natural	Synthetic	$\Delta \delta_{\rm c}$
Thr						
NH	9.21 (d, 7.9)	9.22 (d, 8.0)	-0.01			
α	4.99 (dd, 3.2, 7.9)	4.99 (m)	0.00	59.5	59.3	0.2
β	4.91 (dq, 3.2, 6.4)	4.90 (m)	0.01	67.0	67.1	-0.1
γ	1.49 (d, 6.4)	1.48 (d, 6.4)	0.01	20.2	20.1	0.1
СО				171.3	171.2	0.1
Phe						
NH	8.79 (d, 7.5)	8.81 (d, 7.6)	-0.02			
α	5.19 (m)	5.20 (m)	-0.01	56.3	56.4	-0.1
β	3.57 (dd, 8.2, 13.9)	3.57 (dd, 6.0, 14.0)	0.00	38.1	38.0	0.1
	3.37 (dd, 8.6, 13.9)	3.40 (dd, 8.8, 14.0)	-0.03			
γ				138.2	138.2	0.0
δ	7.20 (d, 7.4)	7.23 (m)	-0.03	128.7	128.7	0.0
3	7.35 (t, 7.4)	7.37 (d, 7.2)	-0.02	129.6	129.5	0.1
ζ	7.17 (m)	7.19 (m)	-0.02	126.8	126.8	0.0
CO				172.7	172.7	0.0
Leu						
NH	9.07 (d, 7.5)	9.01 (d, 7.2)	0.06			
α	4.40 (dt, 7.5)	4.46 (m)	-0.06	55.1	54.9	0.2
β	1.97 (t, 7.5)	1.95 (t, 7.4)	0.02	40.0	40.3	-0.3
γ	1.51 (m)	1.53 (m)	-0.02	24.9	24.9	0.0
δ	0.78 (d, 6.5)	0.79 (d, 6.0)	-0.01	23.1	23.1	0.0
	0.78 (d, 6.6)	0.78 (d, 6.4)	0.00	21.5	21.5	0.0
СО				172.4	172.4	0.0

Tyr

NH	8.60 (d, 6.9)	8.52 (d, 7.2)	0.08			
α	4.82 (m)	4.83 (m)	-0.01	56.3	56.0	0.3
β	3.56 (dd, 6.7, 14.0)	3.53 (app d, 7.2)	0.005	37.1	37.2	-0.1
	3.51 (dd, 6.8, 14.0)					
γ				128.6	128.5	0.1
δ	7.42 (d, 8.4)	7.42 (d, 8.4)	0.00	131.2	131.2	0.0
3	7.14 (d, 8.4)	7.14 (d, 8.4)	0.00	116.3	116.2	0.1
ζ				157.7	157.7	0.0
СО				172.3	172.3	0.0
Val						
NH	8.35 (d, 6.0)	8.44 (d, 5.2)	-0.09			
α	4.53 (t, 6.0)	4.48 (m)	0.05	61.3	61.4	-0.1
β	2.46 (m)	2.43 (m)	0.03	30.2	30.1	0.1
γ	1.13 (d, 6.7)	1.12 (d, 6.4)	0.01	19.4	19.4	0.0
	1.09 (d, 6.8)	1.08 (d, 6.8)	0.01	19.2	19.2	0.0
СО				172.7	172.7	0.0
Gly						
NH	9.97 (t, 5.5)	9.94 (t, 5.6)	0.03			
α	4.83 (dd, 5.5, 15.6)	4.84 (m)*	-0.01	44.2	44.1	0.1
	3.88 (dd, 5.5, 15.6)	3.87 (dd, 4.6, 15.8)	0.01			
CO				170.7	170.6	0.1

Fmoc-Tyr(OtBu)-Pen(Ψ^{Me,Me}Pro)-OH (4)

H₂N-Thr(*t*Bu)-Phe-Leu-Tyr(*t*Bu)-Pen($\Psi^{Me,Me}$ Pro)-Gly-OH (2)

Cyclo-[Thr(*t*Bu)-Phe-Leu-Tyr(*t*Bu)-Pen($\Psi^{Me,Me}$ Pro)-Gly] (8)

Cyclo-[Thr(tBu)-Phe-Leu-Tyr(tBu)-Val-Gly] (11)

Cyclo-[Thr-Phe-Leu-Tyr-Val-Gly] (Dichotomin A) (1)

