Supplementary Material

Synthesis of Dichotomin A: Use of a Penicillamine Derived Pseudoproline to Furnish Native Valine Residues

Michelle S. Y. Wong ${ }^{A}$, Deni Taleski ${ }^{A}$, Katrina A. Jolliffe ${ }^{A}$, ${ }^{B}$
${ }^{\text {A }}$ School of Chemistry, The University of Sydney, NSW 2006, Australia.
${ }^{3}$ Corresponding author. Email: kate.jolliffe@sydney.edu.au

Table of contents:

S2- S5: Figures S1- S6 - evidence for cisoid and transoid amide bonds from 2D NMR experiments
S6-7: Table S 1 - Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of isolated and synthesised samples of dichotomin A 1 .

S8-13: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{4}, \mathbf{2}, \mathbf{3}, \mathbf{8}, \mathbf{1 1}, \mathbf{1}$.

Figures and Tables

Figure S1. Characteristic NOE interactions indicative of cis or trans conformation of the $\operatorname{Tyr}(t \mathrm{Bu})$ $\operatorname{Pen}\left(\Psi^{\mathrm{H}, \mathrm{H}} \operatorname{Pro}\right)$ amide bond.

Figure S2. Partial ROESY spectra of dichotomin A linear precursor 2, collected on a 500 MHz spectrometer in DMSO- d_{6}. (a) Characteristic cross peaks between the Tyr- α-H and the Pen- $\alpha-\mathrm{H}$ signals indicate that the conformation of the $\operatorname{Tyr}(t \mathrm{Bu})-\mathrm{Pen}\left(\Psi^{\mathrm{Me}, \mathrm{Me}} \mathrm{Pro}\right)$ amide bond is cis. (b) Cross peaks between the Ψ Pro- CH_{3} and the Tyr- $\alpha-\mathrm{H}$ signals, which would indicate the trans conformation, are absent.
(a)

(b)

Figure S3. Partial ROESY spectra of dichotomin A linear precursor 3, collected on a 500 MHz spectrometer in DMSO- d_{6}. (a) The presence of a characteristic cross peak between the Tyr- $\alpha-\mathrm{H}$ and the Pen- $\alpha-\mathrm{H}$ signals indicating that the $\operatorname{Tyr}(t \mathrm{Bu})-\operatorname{Pen}\left(\Psi^{\mathrm{Me}, \mathrm{Me}} \operatorname{Pro}\right)$ amide bond is in the cis conformation, and the absence of Ψ Pro- $\mathrm{CH}_{3}-\mathrm{Tyr}-\alpha-\mathrm{H}$ cross peaks which would be evidence of the trans form. (b) NOE interaction between the Tyr- $\alpha-\mathrm{H}$ and Gly-NH signals, providing further evidence of a cis amide bond.
(a)

(b)

Figure S4. Excerpts from the ROESY spectrum of $\operatorname{Pen}\left(\Psi^{\mathrm{Me}, \mathrm{Me}} \mathrm{Pro}\right)$-containing cyclic hexapeptide 8, collected on a 500 MHz in DMSO- d_{6}. (a) $\operatorname{The} \operatorname{Tyr}(t \mathrm{Bu})-\operatorname{Pen}\left(\Psi^{\mathrm{Me}, \mathrm{Me}} \mathrm{Pro}\right)$ amide bond is in the cis conformation, as indicated by cross peaks between the Tyr- $\alpha-\mathrm{H}$ and Pen- $\alpha-\mathrm{H}$ signals, and the absence of characteristic trans cross peaks between the Ψ Pro- CH_{3} and Tyr- α - H signals. (b) A cross peak between the Tyr- $\alpha-\mathrm{H}$ and Gly-NH signals also indicates the cis conformation.

cis

trans

Figure S5. Characteristic NOE interactions indicative of cis or trans conformation in the Tyr-Val amide bond.

(b)

Figure S6. Partial ROESY spectrum of dichotomin A 1, collected on a 500 MHz spectrometer in DMSO- d_{6}. (a) The presence of a cross peak between the Val-NH and Tyr- α-H signals, and the absence of a cross peak between the Tyr- $\alpha-\mathrm{H}$ and Gly-NH signals indicates that the Tyr-Val amide bond is in the trans conformation in the natural product. (b) The absence of NOE interactions between the Tyr- $\alpha-$ H and Val- $\alpha-\mathrm{H}$ peaks provides further evidence of the trans conformation.

Table S2. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of isolated and synthesised samples of dichotomin A 1. $\Delta \delta_{H}$ of labile NH groups are highlighted in blue. Spectral data for the both samples were collected in pyridine- d_{5}. Spectral data for the isolated sample were collected on a 500 MHz spectrometer, and data for the synthetic sample were collected on a 400 MHz .

Assignment	$\delta_{\text {H }}(J$ in Hz)		$\Delta \delta_{\text {H }}$	δ_{C}		$\Delta \delta_{\text {c }}$
	Natural	Synthetic		Natural	Synthetic	
Thr						
NH	9.21 (d, 7.9)	9.22 (d, 8.0)	-0.01			
α	4.99 (dd, 3.2, 7.9)	4.99 (m)	0.00	59.5	59.3	0.2
β	4.91 (dq, 3.2, 6.4)	4.90 (m)	0.01	67.0	67.1	-0.1
γ	1.49 (d, 6.4)	1.48 (d, 6.4)	0.01	20.2	20.1	0.1
CO				171.3	171.2	0.1

Phe

NH	$8.79(\mathrm{~d}, 7.5)$	$8.81(\mathrm{~d}, 7.6)$	-0.02			
α	$5.19(\mathrm{~m})$	$5.20(\mathrm{~m})$	-0.01	56.3	56.4	-0.1
β	$3.57(\mathrm{dd}, 8.2,13.9)$	$3.57(\mathrm{dd}, 6.0,14.0)$	0.00	38.1	38.0	0.1
	$3.37(\mathrm{dd}, 8.6,13.9)$	$3.40(\mathrm{dd}, 8.8,14.0)$	-0.03			
γ				138.2	138.2	0.0
δ	$7.20(\mathrm{~d}, 7.4)$	$7.23(\mathrm{~m})$	-0.03	128.7	128.7	0.0
ε	$7.35(\mathrm{t}, 7.4)$	$7.37(\mathrm{~d}, 7.2)$	-0.02	129.6	129.5	0.1
ζ	$7.17(\mathrm{~m})$	$7.19(\mathrm{~m})$	-0.02	126.8	126.8	0.0
CO				172.7	172.7	0.0

Leu

NH	$9.07(\mathrm{~d}, 7.5)$	$9.01(\mathrm{~d}, 7.2)$	0.06			
α	$4.40(\mathrm{dt}, 7.5)$	$4.46(\mathrm{~m})$	-0.06	55.1	54.9	0.2
β	$1.97(\mathrm{t}, 7.5)$	$1.95(\mathrm{t}, 7.4)$	0.02	40.0	40.3	-0.3
γ	$1.51(\mathrm{~m})$	$1.53(\mathrm{~m})$	-0.02	24.9	24.9	0.0
δ	$0.78(\mathrm{~d}, 6.5)$	$0.79(\mathrm{~d}, 6.0)$	-0.01	23.1	23.1	0.0
	$0.78(\mathrm{~d}, 6.6)$	$0.78(\mathrm{~d}, 6.4)$	0.00	21.5	21.5	0.0
CO				172.4	172.4	0.0

Tyr

NH	$8.60(\mathrm{~d}, 6.9)$	$8.52(\mathrm{~d}, 7.2)$	0.08			
α	$4.82(\mathrm{~m})$	$4.83(\mathrm{~m})$	-0.01	56.3	56.0	0.3
β	$3.56(\mathrm{dd}, 6.7,14.0)$	$3.53(\mathrm{app} \mathrm{d}, 7.2)$	0.005	37.1	37.2	-0.1
	$3.51(\mathrm{dd}, 6.8,14.0)$			128.6	128.5	0.1
γ						
δ	$7.42(\mathrm{~d}, 8.4)$	$7.42(\mathrm{~d}, 8.4)$	0.00	131.2	131.2	0.0
ε	$7.14(\mathrm{~d}, 8.4)$	$7.14(\mathrm{~d}, 8.4)$	0.00	116.3	116.2	0.1
ζ				157.7	157.7	0.0
CO				172.3	172.3	0.0
Val						
NH	$8.35(\mathrm{~d}, 6.0)$	$8.44(\mathrm{~d}, 5.2)$	-0.09			
α	$4.53(\mathrm{t}, 6.0)$	$4.48(\mathrm{~m})$	0.05	61.3	61.4	-0.1
β	$2.46(\mathrm{~m})$	$2.43(\mathrm{~m})$	0.03	30.2	30.1	0.1
γ	$1.13(\mathrm{~d}, 6.7)$	$1.12(\mathrm{~d}, 6.4)$	0.01	19.4	19.4	0.0
	$1.09(\mathrm{~d}, 6.8)$	$1.08(\mathrm{~d}, 6.8)$	0.01	19.2	19.2	0.0
CO				172.7	172.7	0.0

Gly

NH	$9.97(\mathrm{t}, 5.5)$	$9.94(\mathrm{t}, 5.6)$	0.03			
α	$4.83(\mathrm{dd}, 5.5,15.6)$	$4.84(\mathrm{~m})^{*}$	-0.01	44.2	44.1	0.1
	$3.88(\mathrm{dd}, 5.5,15.6)$	$3.87(\mathrm{dd}, 4.6,15.8)$	0.01			

CO
$170.7 \quad 170.6 \quad 0.1$

Fmoc-Tyr(OtBu)-Pen($\left.\Psi^{\mathrm{Me}, \mathrm{Me}} \mathbf{P r o}\right)-\mathrm{OH}$ (4)

$\mathrm{H}_{2} \mathrm{~N}$-Thr $(t \mathrm{Bu})$-Phe-Leu-Tyr($t \mathrm{Bu}$)-Pen($\left.\Psi^{\mathrm{Me}, \mathrm{Me}} \mathbf{P r o}\right)$-Gly-OH (2)

Cyclo-[Thr(tBu)-Phe-Leu-Tyr(tBu)-Pen($\left.\left.\Psi^{\mathrm{Me}, \mathrm{Me}} \mathbf{P r o}\right)-\mathrm{Gly}\right](8)$

Cyclo-[Thr(tBu)-Phe-Leu-Tyr(tBu)-Val-Gly] (11)

Cyclo-[Thr-Phe-Leu-Tyr-Val-Gly] (Dichotomin A) (1)

