Supplementary Material

The Conversion of Levoglucosenone into Isolevoglucosenone

Xinghua Ma, ${ }^{\text {A }}$ Natasha Anderson, ${ }^{\text {A }}$ Lorenzo V. White, ${ }^{\text {A }}$ Song Bae, ${ }^{\text {A }}$ Warwick Raverty, ${ }^{\text {B }}$ Anthony C. Willis, ${ }^{\mathrm{A}}$ and Martin G. Banwell ${ }^{\mathrm{A}, \mathrm{C}}$

${ }^{A}$ Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra ACT 2601, Australia.
${ }^{\text {B }}$ Circa Group Pty Ltd, 34 Norfolk Court, Coburg North VIC 3058, Australia
${ }^{\text {C }}$ Corresponding author. Email: Martin.Banwell@anu.edu.au
Contents Page

- Anisotropic Displacement Ellipsoid Plots for Compounds 5, 9, 10 and 14 S2
$-{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 2-16 S5

Figure S1: Structure of compound 5 (CCDC 1023960) with labelling of selected atoms, showing one location of the disordered atoms (O10: occupancy 0.5). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S2: Structure of compound 5 (CCDC 1023960) with labelling of selected atoms, showing the alternative location of the disordered atoms (O101: occupancy 0.5). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S3: Structure of compound 9 (CCDC 1023961) with labelling of selected atoms. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S4: Structure of compound 10 (CCDC 1023962) with labelling of selected atoms. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Figure S5: Structure of compound 14 (CCDC 1023963) with labelling of selected atoms. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 6 (Recorded in CDCl_{3})

$75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 6 (Recorded in CDCl_{3})

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 7 (Recorded in CDCl_{3})

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 7 (Recorded in CDCl_{3})

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 8 (Recorded in CDCl_{3})

* = signal due to epimer

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 9 (Recorded in CDCl_{3})

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 10 (Recorded in CDCl_{3})

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 11 (Recorded in CDCl_{3})

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 11 (Recorded in CDCl_{3})

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 12 (Recorded in CDCl_{3})

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 12 (Recorded in CDCl_{3})
Cosceres

12

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 3 (Recorded in CDCl_{3})

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 13 [Recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$]

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 14 [Recorded in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 4 (Recorded in CDCl_{3})

4

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 15 [Recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$]

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 15 [Recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$]

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 16 [Recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$]

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 2 (Recorded in CDCl_{3})

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 2 (Recorded in CDCl_{3})

